ترغب بنشر مسار تعليمي؟ اضغط هنا

141 - H. G. Zhang , B.T Song , J. Chen 2018
A systematic investigation about the structure and magnetism of Fe75-xCr25Gax (11<x<33) and Fe50Cr50-yGay (0<y<33) series has been carried out in this work. It shows that the parent Fe50Cr25Ga25 phase has higher tolerance for Ga replacing Cr than rep lacing Fe atoms. An abrupt flip of Curie temperature and magnetization in the Fe50Cr50-yGay (0<y<33) series was observed at the composition of Fe50Cr25Ga25. We proposed an explanation concerning anti-sites occupation and magnetic structure transition in this series. The induced structure is proved energetically favorable from first-principles calculations. This work can help us to understand the dependences between the crystal structure and magnetism in Fe-based Heusler compounds, and provides a method to deduce the atomic configurations based on the evolution of magnetism.
81 - Y. Li , Z. Y. Wei , H. G. Zhang 2016
An attempt was made to tailor the magnetostructural transitions (MSTs) over a wide temperature range under the principle of isostructural alloying. A series of wide Curie-temperature windows (CTWs) with a maximal width of 377 K between 69 and 446 K w ere established in the Mn1-yCoyNiGe1-xSix system. Throughout the CTWs, the magnetic-field-induced metamagnetic behavior and giant magnetocaloric effects are obtained. The (Mn,Co)Ni(Ge,Si) system shows great potential as multifunctional phase-transition materials that work in a wide range covering liquid-nitrogen and above water-boiling temperatures. Moreover, general understanding to isostructural alloying and CTWs constructed in (Mn,Co)Ni(Ge,Si) as well as (Mn,Fe)Ni(Ge,Si) are provided.
51 - H. G. Zhang , J. Chen , E. K. Liu 2016
Theoretical and experimental characterizations of Mn2CrGa compound in regard to the possibility of phase transformation have been carried out in this work. Under a high ordering L21 structure, this compound has the potential to be a martensite phase transition material. However, experimental results show a severe disordering took place in this system, which forbids the occurring of the phase transition. This work provides important reference for the design of new phase transition materials in Heusler alloys.
An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting antiferromagn etic martensite to ferromagnetic state, a 200 K Curie-temperature window was established between Curie temperatures of austenite and martensite phases. In the window, a first-order magnetostructural transition between paramagnetic austenite and ferromagnetic martensite occurs with a sharp jump in magnetization, showing a magnetic entropy change as large as -40 J kg-1 K-1 in a 50 kOe field change. This giant magnetocaloric effect enables Mn1-xCoxNiGe to become a potential magnetic refrigerant.
Abundant phenomena in CoCr2-xMnxO4 (x = 0 ~ 2) samples such as magnetic compensation, magnetostriction and exchange bias effect have been observed and investigated in this work. A structure transition from cubic to tetragonal symmetry has been found in the samples with x around 1.4. It has shown that the doped Mn3+ ions initially occupy the A (Co) sites when x < 0.2, and then mainly take the B1 (Cr) sites. This behavior results in a role conversion of magnetic contributors, and thus a magnetic compensation between two competitively magnetic sublattices at the composition near x = 0.5. Furthermore, temperature compensation has also been found in the samples with x = 0.5 and 0.6, with the compensation temperature in the range of 45 ~ 75 K. The Mn-doping also changes the frustration degree and modulates the exchange interaction in this system, and thus prevents the formation of long range conical order of spins. Therefore, the magnetoelectric transition temperature at 23 K in CoCr2O4 is shifted to lower temperature with increased dopants. The magnetostriction effect in this Cobalt spinel system has been considered for the first time. The strain has a maximum value of about 240 ppm at x = 0.2 and shows the similar tendency as the compensation behaviors. Additionally, the exchange bias effect observed in the samples with x < 0.5 shows a negative value under low cooling field for x = 0.5.
A new disordered atom configuration in Fe2CrGa alloy has been created by ball-milling method. This leads to a significant enhancement of the magnetic moment up to 3.2~3.9 {mu}B and an increase of Curie temperature by about 200 K, compared with the ar c-melt samples. Combination of first-principles calculations and experimental results reveals that Fe2CrGa alloy should crystallize in Hg2CuTi based structure with different atomic disorders for the samples prepared by different methods. It is addressed that magnetic interactions play a crucial role for the system to adopt such an atomic configuration which disobeys the empirical rule.
The Heusler alloys Fe2NiZ (Z=Al, Ga, Si and Ge) have been synthesized and investigated focusing on the phase stability and the magnetic properties. The experimental and theoretical results reveal the covalent bonding originated from p-d hybridization takes an important role in these alloys, which dominates the stability of ordered structure but leads to the decline of the band splitting. The electronic structure shows the IV group main group element (Si and Ge) provides stronger covalent effect than that of the III group element (Al and Ga). It has been found that the variations of the physical parameters, lattice constants, critical ordering temperature, magnetic moments and Curie temperature, precisely follow these covalent characters.
We have investigated the impact of covalent hybridization on martensitic structure and magnetic properties of Ni50Mn5+xGa35-xCu10 shape memory alloys. We found that the lattice distortion ((c-a)/a) of L10 martensite monotonously changes with the subs titution of Mn for Ga atoms and shows a kink behavior at Ga(at.%)= 25 due to the weakened covalent effect between main-group and transition-metal atoms. Moreover, owing to the competition between covalence hybridization and magnetic ordering of introduced Mn atoms, the molecular magnetic moment and Curie temperature coincidently show maximums at Ga(at.%)=25 as well. These behaviors are closely associated with corresponding changes of the strength of covalent hybridization. The results therefore suggest that careful control of the concentration of main-group atoms in Heusler alloys can serve as an additional general tuning parameter for searching new multifunctional materials.
200 - H. G. Zhang , H. Hu , Y. Pan 2009
Laterally localized electronic states are identified on a single layer of graphene on ruthenium. The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a quantum dot array, evidenced by quantum wel l resonances that are modulated by the corrugation of the graphene layer. The quantum well resonances are strongest on the isolated hill regions where the graphene is decoupled from the surface. This peculiar nanostructure is expected to become important for single electron physics where it bridges zero-dimensional molecule-like and two-dimensional graphene on a highly regular lattice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا