ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder-induced significant enhancement in magnetization of ball-milled Fe2CrGa alloy

89   0   0.0 ( 0 )
 نشر من قبل E.K. Liu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new disordered atom configuration in Fe2CrGa alloy has been created by ball-milling method. This leads to a significant enhancement of the magnetic moment up to 3.2~3.9 {mu}B and an increase of Curie temperature by about 200 K, compared with the arc-melt samples. Combination of first-principles calculations and experimental results reveals that Fe2CrGa alloy should crystallize in Hg2CuTi based structure with different atomic disorders for the samples prepared by different methods. It is addressed that magnetic interactions play a crucial role for the system to adopt such an atomic configuration which disobeys the empirical rule.



قيم البحث

اقرأ أيضاً

102 - Jun-young Kim 2020
Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one shoul d not only increase the charge- to-spin conversion efficiency but also decrease the longitudinal resistivity of the heavy metal. In this work, we investigate the spin Hall conductivity in W_{1-x}Ta_{x} / CoFeB / MgO (x = 0 - 0.2) using spin torque ferromagnetic resonance measurements. Alloying W with Ta leads to a factor of two change in both the damping-like effective spin Hall angle (from - 0.15 to - 0.3) and longitudinal resistivity (60 - 120 {mu}W cm). At 11% Ta concentration, a remarkably high spin Hall angle value of - 0.3 is achieved with a low longitudinal resistivity 100 {mu}W cm, which could lead to a very low power consumption for this W-based alloy. This work demonstrates sputter-deposited W-Ta alloys could be a promising material for power-efficient spin current generation.
Growing demands for the voltage-driven spintronic applications with ultralow-power consumption have led to new interest in exploring the voltage-induced magnetization switching in ferromagnetic metals. In this study, we observed a large perpendicular magnetic anisotropy change in Au(001) / ultrathin Fe80Co20(001) / MgO(001) / Polyimide / ITO junctions, and succeeded in realizing a clear switching of magnetic easy axis between in-plane and perpendicular directions. Furthermore, employing a perpendicularly magnetized film, voltage-induced magnetization switching in the perpendicular direction under the assistance of magnetic fields was demonstrated. These pioneering results may open a new window of electric-field controlled spintronics devices.
Magnesium diboride bulk pellets were fabricated from pre-reacted MgB2 powder ball milled with different amounts of exposure to air. Evidence of increased electron scattering including increased resistivity, depressed Tc, and enhanced Hc2 of the mille d and heat treated samples were observed as a result of increased contact with air. These and other data were consistent with alloying with carbon as a result of exposure to air. A less clear trend of decreased connectivity associated with air exposure was also observed. In making the case that exposure to air should be considered a doping process, these results may explain the wide varibability of undoped MgB2 properties extant in the literature.
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomist ic spin-dynamics simulations. Experimentally, we find that the demagnetization time ($tau_{M}$) in films of $mathrm{Co_{2}FeAl}$ is almost independent of varying structural order, and that it is similar to that in elemental 3d ferromagnets. In contrast, the slower process of magnetization recovery, specified by $tau_{R}$, is found to occur on picosecond time scales, and is demonstrated to correlate strongly with the Gilbert damping parameter ($alpha$). Our results show that $mathrm{Co_{2}FeAl}$ is unique, in that it is the first material that clearly demonstrates the importance of the damping parameter in the remagnetization process. Based on these results we argue that for $mathrm{Co_{2}FeAl}$ the remagnetization process is dominated by magnon dynamics, something which might have general applicability.
We report on the photo-induced precession of the ferromagnetically coupled Mn spins in (Ga,Mn)As, which is observed even with no external magnetic field applied. We concentrate on various experimental aspects of the time-resolved magneto-optical Kerr effect (TR-MOKE) technique that can be used to clarify the origin of the detected signals. We show that the measured data typically consist of several different contributions, among which only the oscillatory signal is directly connected with the ferromagnetic order in the sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا