ﻻ يوجد ملخص باللغة العربية
We have investigated the impact of covalent hybridization on martensitic structure and magnetic properties of Ni50Mn5+xGa35-xCu10 shape memory alloys. We found that the lattice distortion ((c-a)/a) of L10 martensite monotonously changes with the substitution of Mn for Ga atoms and shows a kink behavior at Ga(at.%)= 25 due to the weakened covalent effect between main-group and transition-metal atoms. Moreover, owing to the competition between covalence hybridization and magnetic ordering of introduced Mn atoms, the molecular magnetic moment and Curie temperature coincidently show maximums at Ga(at.%)=25 as well. These behaviors are closely associated with corresponding changes of the strength of covalent hybridization. The results therefore suggest that careful control of the concentration of main-group atoms in Heusler alloys can serve as an additional general tuning parameter for searching new multifunctional materials.
Ni$_{50}$Mn$_{34}$In$_{16}$ undergoes a martensitic transformation around 250 K and exhibits a field induced reverse martensitic transformation and substantial magnetocaloric effects. We substitute small amounts Ga for In, which are isoelectronic, to
We study the branching of twins appearing in shape memory alloys at the interface between austenite and martensite. In the framework of three-dimensional non-linear elasticity theory, we propose an explicit, low-energy construction of the branched mi
Jerky elasticity was observed by dynamical mechanical analyzer measurements in a single crystal of the shape memory alloy Cu74.08Al23.13Be2.79. Jerks appear as spikes in the dissipation of the elastic response function and relate to the formation of
We report magnetization and differential thermal analysis measurements as a function of pressure accross the martensitic transition in magnetically superelastic Ni-Mn-In alloys. It is found that the properties of the martensitic transformation are si
Magnetic phase diagrams of the metamagnetic shape memory alloys Ni50-xCoxMn31.5Ga18.5 (x = 9 and 9.7) were produced from high-field magnetization measurements up to 56 T. For both compounds, magnetic field induced martensitic transformations are obse