ترغب بنشر مسار تعليمي؟ اضغط هنا

Mn-doping induced magnetic properties in Co2CrO4 system

45   0   0.0 ( 0 )
 نشر من قبل E.K. Liu
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Abundant phenomena in CoCr2-xMnxO4 (x = 0 ~ 2) samples such as magnetic compensation, magnetostriction and exchange bias effect have been observed and investigated in this work. A structure transition from cubic to tetragonal symmetry has been found in the samples with x around 1.4. It has shown that the doped Mn3+ ions initially occupy the A (Co) sites when x < 0.2, and then mainly take the B1 (Cr) sites. This behavior results in a role conversion of magnetic contributors, and thus a magnetic compensation between two competitively magnetic sublattices at the composition near x = 0.5. Furthermore, temperature compensation has also been found in the samples with x = 0.5 and 0.6, with the compensation temperature in the range of 45 ~ 75 K. The Mn-doping also changes the frustration degree and modulates the exchange interaction in this system, and thus prevents the formation of long range conical order of spins. Therefore, the magnetoelectric transition temperature at 23 K in CoCr2O4 is shifted to lower temperature with increased dopants. The magnetostriction effect in this Cobalt spinel system has been considered for the first time. The strain has a maximum value of about 240 ppm at x = 0.2 and shows the similar tendency as the compensation behaviors. Additionally, the exchange bias effect observed in the samples with x < 0.5 shows a negative value under low cooling field for x = 0.5.

قيم البحث

اقرأ أيضاً

We report on a systematic study of optical properties of (Ga,Mn)As epilayers spanning the wide range of accessible substitutional Mn_Ga dopings. The growth and post-growth annealing procedures were optimized for each nominal Mn doping in order to obt ain films which are as close as possible to uniform uncompensated (Ga,Mn)As mixed crystals. We observe a broad maximum in the mid-infrared absorption spectra whose position exhibits a prevailing blue-shift for increasing Mn-doping. In the visible range, a peak in the magnetic circular dichroism blue shifts with increasing Mn-doping. These observed trends confirm that disorder-broadened valence band states provide a better one-particle representation for the electronic structure of high-doped (Ga,Mn)As with metallic conduction than an energy spectrum assuming the Fermi level pinned in a narrow impurity band.
We present in this paper the changes in the room temperature magnetic property of ZnO on Mn doping prepared using solvo-thermal process. The zero field cooled (ZFC) and field cooled (FC) magnetisation of undoped ZnO showed bifurcation and magnetic hy steresis at room temperature. Upon Mn doping the magnetic hysteresis at room temperature and the bifurcation in ZFC-FC magnetization vanishes. The results seem to indicate that undoped ZnO is ferromagnetic while on the other hand the Mn doped ZnO is not a ferromagnetic system. We observe that on addition of Mn atoms the system shows antiferromagnetism with very giant magnetic moments.
Ferromagnetic semiconductors promise the extension of metal-based spintronics into a material system that combines widely tunable electronic, optical, and magnetic properties. Here, we take steps towards realizing that promise by achieving independen t control of electronic doping in the ferromagnetic semiconductor (Ga,Mn)As. Samples are comprised of superlattices of 0.5 monolayer (ML) MnAs alternating with 20 ML GaAs and are grown by low temperature (230 C) atomic layer epitaxy (ALE). This allows for the reduction of excess As incorporation and hence the number of charge-compensating As-related defects. We grow a series of samples with either Be or Si doping in the GaAs spacers (p- and n-type dopants, respectively), and verify their structural quality by in situ reflection high-energy electron diffraction (RHEED) and ex situ x-ray diffraction. Magnetization measurements reveal ferromagnetic behavior over the entire doping range, and show no sign of MnAs precipitates. Finally, magneto-transport shows the giant planar Hall effect and strong (20%) resistance fluctuations that may be related to domain wall motion.
211 - Chi Xu , Chenhui Zhang , Mao Wang 2019
In the present work, we perform a systematic investigation on p-type codoping in (Ga,Mn)As. Through gradually increasing Zn doping concentration, the hole concentration increases, which should theoretically lead to an increase of the Curie temperatur e (TC) according to the p-d Zener model. Unexpectedly, although the film keeps its epitaxial structure, both TC and the magnetization decrease. The samples present a phase transition from ferromagnetism to paramagnetism upon increasing hole concentration. In the intermediate regime, we observe a signature of antiferromagnetism. By using channeling Rutherford backscattering spectrometry and particle-induced x-ray emission, the substitutional Mn atoms are observed to shift to interstitial sites, while more Zn atoms occupy Ga sites, which explains the observed behavior. This is also consistent with first-principles calculations, showing that the complex of substitutional Zn and interstitial Mn has the lowest formation energy.
Taking the non-collinear antiferromagnetic hexagonal Heusler compound Mn$_3$Ge as a reference system, the contributions to linear response phenomena arising solely from the chiral coplanar and non-coplanar spin configurations are investigated. Orbita l moments, X-ray absorption, anomalous and spin Hall effects, as well as corresponding spin-orbit torques and Edelstein polarizations are studied depending on a continuous variation of the polar angle relative to the Kagome planes of corner-sharing triangles between the non-collinear antiferromagnetic and the ferromagnetic limits. By scaling the speed of light from the relativistic Dirac case to the non-relativistic limit the chirality-induced or topological contributions can be identified by suppressing the spin-orbit coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا