ترغب بنشر مسار تعليمي؟ اضغط هنا

We give necessary and sufficient conditions for the convergence with geometric rate of the denominators of linear Pade-orthogonal approximants corresponding to a measure supported on a general compact set in the complex plane. Thereby, we obtain an a nalogue of Gonchars theorem on row sequences of Pade approximants.
In this paper we introduce a new type of code, called projective nested cartesian code. It is obtained by the evaluation of homogeneous polynomials of a fixed degree on a certain subset of $mathbb{P}^n(mathbb{F}_q)$, and they may be seen as a general ization of the so-called projective Reed-Muller codes. We calculate the length and the dimension of such codes, a lower bound for the minimum distance and the exact minimum distance in a special case (which includes the projective Reed-Muller codes). At the end we show some relations between the parameters of these codes and those of the affine cartesian codes.
127 - Manuel Gimenez 2014
Nowadays, software artifacts are ubiquitous in our lives being an essential part of home appliances, cars, cell phones, and even in more critical activities like aeronautics and health sciences. In this context software failures may produce enormous losses, either economical or, in the worst case, in human lives. Software analysis is an area in software engineering concerned with the application of diverse techniques in order to prove the absence of errors in software pieces. In many cases different analysis techniques are applied by following specific methodological combinations that ensure better results. These interactions between tools are usually carried out at the user level and it is not supported by the tools. In this work we present HeteroGenius, a framework conceived to develop tools that allow users to perform hybrid analysis of heterogeneous software specifications. HeteroGenius was designed prioritising the possibility of adding new specification languages and analysis tools and enabling a synergic relation of the techniques under a graphical interface satisfying several well-known usability enhancement criteria. As a case-study we implemented the functionality of Dynamite on top of HeteroGenius.
The $N to Delta$ weak vertex provides an important contribution to the one pion production in neutrino-nucleon and neutrino-nucleus scattering for $pi N$ invariant masses below 1.4 GeV. Beyond its interest as a tool in neutrino detection and their ba ckground analyses, one pion production in neutrino-nucleon scattering is useful to test predictions based on the quark model and other internal symmetries of strong interactions. Here we try to establish a connection between two commonly used parametrizations of the weak $N to Delta$ vertex and form factors (FF) and we study their effects on the determination of the axial coupling $C_5^A(0)$, the common normalization of the axial FF, which is predicted to hold 1.2 by using the PCAC hypothesis. Predictions for the $ u_{mu} p to mu^- ppi^+$ total cross sections within the two approaches, which include the resonant $Delta^{++}$ and other background contributions in a coherent way, are compared to experimental data.
Starting from the orthogonal polynomial expansion of a function $F$ corresponding to a finite positive Borel measure with infinite compact support, we study the asymptotic behavior of certain associated rational functions (Pad{e}-orthogonal approxima nts). We obtain both direct and inverse results relating the convergence of the poles of the approximants and the singularities of $F.$ Thereby, we obtain analogues of the theorems of E. Fabry, R. de Montessus de Ballore, V.I. Buslaev, and S.P. Suetin.
The study of neutrinoless double beta decays of nuclei and hyperons require the calculation of hadronic matrix elements of local four-quark operators that change the total charge by two units Delta Q=2 . Using a low energy effective Lagrangian that i nduces these transitions, we compute these hadronic matrix elements in the framework of the MIT bag model. As an illustrative example we evaluate the amplitude and transition rate of Sigma- -> p e- e-, a decay process that violates lepton number by two units (Delta L=2). The relevant matrix element is evaluated without assuming the usual factorization approximation of the four-quark operators and the results obtained in both approaches are compared.
The critical behavior of self-assembled rigid rods on a square lattice was recently reinvestigated by Almarza et al. [Phys. Rev. E 82, 061117 (2010)]. Based on the Binder cumulants and the value of the critical exponent of the correlation length, the authors found that the isotropic-nematic phase transition occurring in the system is in the two-dimensional Ising universality class. This conclusion contrasts with that of a previous study [Lopez et al., Phys. Rev. E 80, 040105 (R) (2009)] which indicates that the transition at intermediate density belongs to the q = 1 Potts universality class. Almarza et al. attributed the discrepancy to the use of the density as the control parameter by Lopez et al. The present work shows that this suggestion is not sufficient, and that the discrepancy arises solely from the use of different statistical ensembles. Finally, the necessity of making corrections to the scaling functions in the canonical ensemble is discussed.
Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior in a two-dimensional system of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with discrete orientational degrees of freedom and, at the same time, undergo a continuous isotropic-nematic (IN) transition. A complete phase diagram was obtained as a function of temperature and density. The numerical results were compared with mean field (MF) and real space renormalization group (RSRG) analytical predictions about the IN transformation. While the RSRG approach supports the continuous nature of the transition, the MF solution predicts a first-order transition line and a tricritical point, at variance with the simulation results.
80 - L. G. Lopez , D. H. Linares , 2010
Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of self-assembled rigid rods on triangular and honeycomb lattices at intermediate density has been studied. The system is composed of monomers with two attractive ( sticky) poles that, by decreasing temperature or increasing density, polymerize reversibly into chains with three allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The determination of the critical exponents, along with the behavior of Binder cumulants, indicate that the IN transition belongs to the q=1 Potts universality class.
We extend the recently developed converse NMR approach [T. Thonhauser, D. Ceresoli, A. Mostofi, N. Marzari, R. Resta, and D. Vanderbilt, J. Chem. Phys. textbf{131}, 101101 (2009)] such that it can be used in conjunction with norm-conserving, non-loca l pseudopotentials. This extension permits the efficient ab-initio calculation of NMR chemical shifts for elements other than hydrogen within the convenience of a plane-wave pseudopotential approach. We have tested our approach on several finite and periodic systems, finding very good agreement with established methods and experimental results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا