ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a new type of code, called projective nested cartesian code. It is obtained by the evaluation of homogeneous polynomials of a fixed degree on a certain subset of $mathbb{P}^n(mathbb{F}_q)$, and they may be seen as a generalization of the so-called projective Reed-Muller codes. We calculate the length and the dimension of such codes, a lower bound for the minimum distance and the exact minimum distance in a special case (which includes the projective Reed-Muller codes). At the end we show some relations between the parameters of these codes and those of the affine cartesian codes.
We construct examples of smooth proper rigid-analytic varieties admitting formal model with projective special fiber and violating Hodge symmetry for cohomology in degrees $geq 3$. This answers negatively a question raised by Hansen and Li.
We compute the basic parameters (dimension, length, minimum distance) of affine evaluation codes defined on a cartesian product of finite sets. Given a sequence of positive integers, we construct an evaluation code, over a degenerate torus, with pres
This paper contains three new results. {bf 1}.We introduce new notions of projective crystalline representations and twisted periodic Higgs-de Rham flows. These new notions generalize crystalline representations of etale fundamental groups introduced
For which positive integers $n,k,r$ does there exist a linear $[n,k]$ code $C$ over $mathbb{F}_q$ with all codeword weights divisible by $q^r$ and such that the columns of a generating matrix of $C$ are projectively distinct? The motivation for study
In this paper we study the tangent spaces of the smooth nested Hilbert scheme $ Hil{n,n-1}$ of points in the plane, and give a general formula for computing the Euler characteristic of a $TT^2$-equivariant locally free sheaf on $Hil{n,n-1}$. Applying