ترغب بنشر مسار تعليمي؟ اضغط هنا

An ab-initio converse NMR approach for pseudopotentials

164   0   0.0 ( 0 )
 نشر من قبل Davide Ceresoli
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the recently developed converse NMR approach [T. Thonhauser, D. Ceresoli, A. Mostofi, N. Marzari, R. Resta, and D. Vanderbilt, J. Chem. Phys. textbf{131}, 101101 (2009)] such that it can be used in conjunction with norm-conserving, non-local pseudopotentials. This extension permits the efficient ab-initio calculation of NMR chemical shifts for elements other than hydrogen within the convenience of a plane-wave pseudopotential approach. We have tested our approach on several finite and periodic systems, finding very good agreement with established methods and experimental results.

قيم البحث

اقرأ أيضاً

We introduce an alternative approach to the first-principles calculation of NMR shielding tensors. These are obtained from the derivative of the orbital magnetization with respect to the application of a microscopic, localized magnetic dipole. The ap proach is simple, general, and can be applied to either isolated or periodic systems. Calculated results for simple hydrocarbons, crystalline diamond, and liquid water show very good agreement with established methods and experimental results.
81 - Z. Wang , S. Wang , S. Obukhov 2018
We have combined the Boltzmann transport equation with an {it ab initio} approach to compute the thermoelectric coefficients of semiconductors. Electron-phonon, ionized impurity, and electron-plasmon scattering rates have been taken into account. The electronic band structure and average intervalley deformation potentials for the electron-phonon coupling are obtained from the density functional theory. The linearized Boltzmann equation has then been solved numerically beyond the relaxation time approximation. Our approach has been applied to crystalline silicon. We present results for the mobility, Seebeck coefficient, and electronic contribution to the thermal conductivity, as a function of the carrier concentration and temperature. The calculated coefficients are in good quantitative agreement with experimental results.
A procedure is presented that combines density functional theory computations of bulk semiconductor alloys with the semiconductor Bloch equations, in order to achieve an ab initio based prediction of the optical properties of semiconductor alloy hete rostructures. The parameters of an eight-band kp-Hamiltonian are fitted to the effective band structure of an appropriate alloy. The envelope function approach is applied to model the quantum well using the kp-wave functions and eigenvalues as starting point for calculating the optical properties of the heterostructure. It is shown that Luttinger parameters derived from band structures computed with the TB09 density functional reproduce extrapolated values. The procedure is illustrated by computing the absorption spectra for a (AlGa)As/Ga(AsP)/(AlGa)As quantum well system with varying phosphide content in the active layer.
We present a first-principles theoretical approach for evaluating the lattice thermal conductivity based on the exact solution of the Boltzmann transport equation. We use the variational principle and the conjugate gradient scheme, which provide us w ith an algorithm faster than the one previously used in literature and able to always converge to the exact solution. Three-phonon normal and umklapp collision, isotope scattering and border effects are rigorously treated in the calculation. Good agreement with experimental data for diamond is found. Moreover we show that by growing more enriched diamond samples it is possible to achieve values of thermal conductivity up to three times larger than the commonly observed in isotopically enriched diamond samples with 99.93% C12 and 0.07 C13.
We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wave function based full ab initio description of the central region of the junction combined with a tight binding appro ximation for the electrodes in the frame of the Keldysh Greens function formalism. Our procedure is demonstrated for a dithiolethine molecule between silver electrodes. The main conducting channel is identified and the full current-voltage characteristic is calculated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا