ترغب بنشر مسار تعليمي؟ اضغط هنا

One pion production in neutrino-nucleon scattering and the different parametrizations of the weak $NrightarrowDelta$ vertex

69   0   0.0 ( 0 )
 نشر من قبل Alejandro Mariano E
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The $N to Delta$ weak vertex provides an important contribution to the one pion production in neutrino-nucleon and neutrino-nucleus scattering for $pi N$ invariant masses below 1.4 GeV. Beyond its interest as a tool in neutrino detection and their background analyses, one pion production in neutrino-nucleon scattering is useful to test predictions based on the quark model and other internal symmetries of strong interactions. Here we try to establish a connection between two commonly used parametrizations of the weak $N to Delta$ vertex and form factors (FF) and we study their effects on the determination of the axial coupling $C_5^A(0)$, the common normalization of the axial FF, which is predicted to hold 1.2 by using the PCAC hypothesis. Predictions for the $ u_{mu} p to mu^- ppi^+$ total cross sections within the two approaches, which include the resonant $Delta^{++}$ and other background contributions in a coherent way, are compared to experimental data.


قيم البحث

اقرأ أيضاً

86 - Fred Myhrer 2019
Heavy baryon chiral perturbation theory ($chi$PT), where the $Delta$ resonance is included, is used in order to examine the axial charged-current component of the weak interaction process at low neutrino energies. At leading chiral order the Adler th eorems, derived using PCAC, are satisfied. At next-to-leading chiral order this effective field theory goes beyond these theorems. I will show that $chi$PT generates deviation from the PCAC predictions, which means that some neutrino-nucleon models that are used in evaluating neutrino nucleus scattering amplitudes, might need modifications.
In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion-nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking cor rections both in pion-nucleon and pion-deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion-deuteron system, and discuss the subtleties regarding the definition of the pion-nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon-nucleon scattering. Based on the pi^{+/-} p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a^{1/2}=(170.5 +/- 2.0) x 10^{-3} mpi^{-1} and a^{3/2}=(-86.5 +/- 1.8) x 10^{-3} mpi^{-1}.
119 - S. X. Nakamura 2009
We study coherent pion production in neutrino-nucleus scattering in the energy region relevant to the recent neutrino oscillation experiments. Our approach is based on the combined use of the Sato-Lee model and the Delta-hole model. Our initial numer ical results are compared with the recent data from K2K and SciBooNE.
248 - S. X. Nakamura 2009
We study coherent pion production in neutrino-nucleus scattering in the energy region relevant to neutrino oscillation experiments of current interest. Our approach is based on a combined use of the Sato-Lee model of electroweak pion production on a nucleon and the Delta-hole model of pion-nucleus reactions. Thus we develop a model which describes pion-nucleus scattering and electroweak coherent pion production in a unified manner. Numerical calculations are carried out for the case of the 12C target. All the free parameters in our model are fixed by fitting to both total and elastic differential cross sections for pi-12C scattering. Then we demonstrate the reliability of our approach by confronting our prediction for the coherent pion photo-productions with data. Finally, we calculate total and differential cross sections for neutrino-induced coherent pion production, and some of the results are (will be) compared with the recent (forthcoming) data from K2K, SciBooNE and MiniBooNE. We also study effect of the non-locality of the Delta-propagation in the nucleus, and compare the elementary amplitudes used in different microscopic calculations.
171 - F. Huang 2009
A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_alpha$, $N_gamma$, $Delta _delta$ and $Delta_beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $Delta_{beta}$ trajectory from the corresponding Chew-Frautschi plot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا