ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the spectral diversity of Type Ia supernovae (SNe Ia) at maximum light using high signal-to-noise spectrophotometry of 173 SNe Ia from the Nearby Supernova Factory. We decompose the diversity of these spectra into different extrinsic and int rinsic components, and we construct a nonlinear parameterization of the intrinsic diversity of SNe Ia that preserves pairings of twin SNe Ia. We call this parameterization the Twins Embedding. Our methodology naturally handles highly nonlinear variability in spectra, such as changes in the photosphere expansion velocity, and uses the full spectrum rather than being limited to specific spectral line strengths, ratios or velocities. We find that the time evolution of SNe Ia near maximum light is remarkably similar, with 84.6% of the variance in common to all SNe Ia. After correcting for brightness and color, the intrinsic variability of SNe Ia is mostly restricted to specific spectral lines, and we find intrinsic dispersions as low as ~0.02 mag between 6600 and 7200 A. With a nonlinear three-dimensional model plus one dimension for color, we can explain 89.2% of the intrinsic diversity in our sample of SNe Ia, which includes several different kinds of peculiar SNe Ia. A linear model requires seven dimensions to explain a comparable fraction of the intrinsic diversity. We show how a wide range of previously-established indicators of diversity in SNe Ia can be recovered from the Twins Embedding. In a companion article, we discuss how these results an be applied to standardization of SNe Ia for cosmology.
We show how spectra of Type Ia supernovae (SNe Ia) at maximum light can be used to improve cosmological distance estimates. In a companion article, we used manifold learning to build a three-dimensional parameterization of the intrinsic diversity of SNe Ia at maximum light that we call the Twins Embedding. In this article, we discuss how the Twins Embedding can be used to improve the standardization of SNe Ia. With a single spectrophotometrically-calibrated spectrum near maximum light, we can standardize our sample of SNe Ia with an RMS of $0.101 pm 0.007$ mag, which corresponds to $0.084 pm 0.009$ mag if peculiar velocity contributions are removed and $0.073 pm 0.008$ mag if a larger reference sample were obtained. Our techniques can standardize the full range of SNe Ia, including those typically labeled as peculiar and often rejected from other analyses. We find that traditional light curve width + color standardization such as SALT2 is not sufficient. The Twins Embedding identifies a subset of SNe Ia including but not limited to 91T-like SNe Ia whose SALT2 distance estimates are biased by $0.229 pm 0.045$ mag. Standardization using the Twins Embedding also significantly decreases host-galaxy correlations. We recover a host mass step of $0.040 pm 0.020$ mag compared to $0.092 pm 0.024$ mag for SALT2 standardization on the same sample of SNe Ia. These biases in traditional standardization methods could significantly impact future cosmology analyses if not properly taken into account.
147 - B. M. Rose , G. Aldering , M. Dai 2021
We review the needs of the supernova community for improvements in survey coordination and data sharing that would significantly boost the constraints on dark energy using samples of Type Ia supernovae from the Vera C. Rubin Observatories, the textit {Nancy Grace Roman Space Telescope}, and the textit{Euclid} Mission. We discuss improvements to both statistical and systematic precision that the combination of observations from these experiments will enable. For example, coordination will result in improved photometric calibration, redshift measurements, as well as supernova distances. We also discuss what teams and plans should be put in place now to start preparing for these combined data sets. Specifically, we request coordinated efforts in field selection and survey operations, photometric calibration, spectroscopic follow-up, pixel-level processing, and computing. These efforts will benefit not only experiments with Type Ia supernovae, but all time-domain studies, and cosmology with multi-messenger astrophysics.
The Nearby Supernova Factory has made spectrophotometric observations of Type Ia supernovae since $2004$. This work presents an interim version of the data produced, including $210$ supernovae observed between $2004$ and $2013$.
In the upcoming decade cadenced wide-field imaging surveys will increase the number of identified $z<0.3$ Type~Ia supernovae (SNe~Ia) from the hundreds to the hundreds of thousands. The increase in the number density and solid-angle coverage of SNe~I a, in parallel with improvements in the standardization of their absolute magnitudes, now make them competitive probes of the growth of structure and hence of gravity. The peculiar velocity power spectrum is sensitive to the growth index $gamma$, which captures the effect of gravity on the linear growth of structure through the relation $f=Omega_M^gamma$. We present the first projections for the precision in $gamma$ for a range of realistic SN peculiar-velocity survey scenarios. In the next decade the peculiar velocities of SNe~Ia in the local $z<0.3$ Universe will provide a measure of $gamma$ to $pm 0.01$ precision that can definitively distinguish between General Relativity and leading models of alternative gravity.
Type Ia supernova cosmology depends on the ability to fit and standardize observations of supernova magnitudes with an empirical model. We present here a series of new models of Type Ia Supernova spectral time series that capture a greater amount of supernova diversity than possible with the models that are currently customary. These are entitled SuperNova Empirical MOdels (textsc{SNEMO}footnote{https://snfactory.lbl.gov/snemo}). The models are constructed using spectrophotometric time series from $172$ individual supernovae from the Nearby Supernova Factory, comprising more than $2000$ spectra. Using the available observations, Gaussian Processes are used to predict a full spectral time series for each supernova. A matrix is constructed from the spectral time series of all the supernovae, and Expectation Maximization Factor Analysis is used to calculate the principal components of the data. K-fold cross-validation then determines the selection of model parameters and accounts for color variation in the data. Based on this process, the final models are trained on supernovae that have been dereddened using the Fitzpatrick and Massa extinction relation. Three final models are presented here: textsc{SNEMO2}, a two-component model for comparison with current Type~Ia models; textsc{SNEMO7}, a seven component model chosen for standardizing supernova magnitudes which results in a total dispersion of $0.100$~mag for a validation set of supernovae, of which $0.087$~mag is unexplained (a total dispersion of $0.113$~mag with unexplained dispersion of $0.097$~mag is found for the total set of training and validation supernovae); and textsc{SNEMO15}, a comprehensive $15$ component model that maximizes the amount of spectral time series behavior captured.
As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SNIa) for cosmology, we have statistically classified a large sample of nearby SNeIa into those located in predomi nantly younger or older environments. This classification is based on the specific star formation rate measured within a projected distance of 1kpc from each SN location (LsSFR). This is an important refinement compared to using the local star formation rate directly as it provides a normalization for relative numbers of available SN progenitors and is more robust against extinction by dust. We find that the SNeIa in predominantly younger environments are DY=0.163pm0.029 mag (5.7 sigma) fainter than those in predominantly older environments after conventional light-curve standardization. This is the strongest standardized SN Ia brightness systematic connected to host-galaxy environment measured to date. The well-established step in standardized brightnesses between SNeIa in hosts with lower or higher total stellar masses is smaller at DM=0.119pm0.032 mag (4.5 sigma), for the same set of SNeIa. When fit simultaneously, the environment age offset remains very significant, with DY=0.129pm0.032 mag (4.0 sigma), while the global stellar mass step is reduced to DM=0.064pm0.029 mag (2.2 sigma). Thus, approximately 70% of the variance from the stellar mass step is due to an underlying dependence on environment-based progenitor age. Standardization using only the SNeIa in younger environments reduces the total dispersion from 0.142pm0.008 mag to 0.120pm0.010 mag. We show that as environment ages evolve with redshift a strong bias on measurement of the dark energy equation of state parameters can develop. Fortunately, data to measure and correct for this effect is likely to be available for many next-generation experiments. [abstract shorten]
99 - K. Boone , G. Aldering , Y. Copin 2018
We have discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications. An offset in the digitization of the CCD output voltage that depends on the binary encoding of one pixel is added to pixels that are read out one, two and/or three pixels later. One result of this effect is the introduction of a differential offset in the background when comparing regions with and without flux from science targets. Conventional data reduction methods do not correct for this offset. We find this effect in 16 of 22 instruments investigated, covering a variety of telescopes and many different front-end electronics systems. The affected instruments include LRIS and DEIMOS on the Keck telescopes, WFC3-UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. The amplitude of the introduced offset is up to 4.5 ADU per pixel, and it is not directly proportional to the measured ADU level. We have developed a model that can be used to detect this binary offset effect in data and correct for it. Understanding how data are affected and applying a correction for the effect is essential for precise astronomical measurements.
Context. Observations of Type Ia supernovae (SNe Ia) can be used to derive accurate cosmological distances through empirical standardization techniques. Despite this success neither the progenitors of SNe Ia nor the explosion process are fully unders tood. The U-band region has been less well observed for nearby SNe, due to technical challenges, but is the most readily accessible band for high-redshift SNe. Aims. Using spectrophotometry from the Nearby Supernova Factory, we study the origin and extent of U-band spectroscopic variations in SNe Ia and explore consequences for their standardization and the potential for providing new insights into the explosion process. Methods. We divide the U-band spectrum into four wavelength regions {lambda}(uNi), {lambda}(uTi), {lambda}(uSi) and {lambda}(uCa). Two of these span the Ca H&K {lambda}{lambda} 3934, 3969 complex. We employ spectral synthesis using SYNAPPS to associate the two bluer regions with Ni/Co and Ti. Results. (1) The flux of the uTi feature is an extremely sensitive temperature/luminosity indicator, standardizing the SN peak luminosity to 0.116 $pm$ 0.011 mag RMS. A traditional SALT2.4 fit on the same sample yields a 0.135 mag RMS. Standardization using uTi also reduces the difference in corrected magnitude between SNe originating from different host galaxy environments. (2) Early U-band spectra can be used to probe the Ni+Co distribution in the ejecta, thus offering a rare window into the source of lightcurve power. (3) The uCa flux further improves standardization, yielding a 0.086 $pm$ 0.010 mag RMS without the need to include an additional intrinsic dispersion to reach {chi}$^2$/dof $sim$ 1. This reduction in RMS is partially driven by an improved standardization of Shallow Silicon and 91T-like SNe.
74 - X. Huang , Z. Raha , G. Aldering 2017
Correction of Type Ia Supernova brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is bas ed on multi-epoch, spectrophotometric observations spanning 3,300 - 9,200 {AA}, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B-V), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV , RMS) = (2.95, 0.08) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands, and compare the 5780 {AA} band with the dust-to-band ratio for the Milky Way. Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the Milky Way. Furthermore we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curve models of Cardelli et al. (1989), ODonnell (1994), and Fitzpatrick (1999), and find the predictions of Fitzpatrick (1999) fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6$pm$1.1 Mpc. We compare this result with distance measurements in the literature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا