ﻻ يوجد ملخص باللغة العربية
Context. Observations of Type Ia supernovae (SNe Ia) can be used to derive accurate cosmological distances through empirical standardization techniques. Despite this success neither the progenitors of SNe Ia nor the explosion process are fully understood. The U-band region has been less well observed for nearby SNe, due to technical challenges, but is the most readily accessible band for high-redshift SNe. Aims. Using spectrophotometry from the Nearby Supernova Factory, we study the origin and extent of U-band spectroscopic variations in SNe Ia and explore consequences for their standardization and the potential for providing new insights into the explosion process. Methods. We divide the U-band spectrum into four wavelength regions {lambda}(uNi), {lambda}(uTi), {lambda}(uSi) and {lambda}(uCa). Two of these span the Ca H&K {lambda}{lambda} 3934, 3969 complex. We employ spectral synthesis using SYNAPPS to associate the two bluer regions with Ni/Co and Ti. Results. (1) The flux of the uTi feature is an extremely sensitive temperature/luminosity indicator, standardizing the SN peak luminosity to 0.116 $pm$ 0.011 mag RMS. A traditional SALT2.4 fit on the same sample yields a 0.135 mag RMS. Standardization using uTi also reduces the difference in corrected magnitude between SNe originating from different host galaxy environments. (2) Early U-band spectra can be used to probe the Ni+Co distribution in the ejecta, thus offering a rare window into the source of lightcurve power. (3) The uCa flux further improves standardization, yielding a 0.086 $pm$ 0.010 mag RMS without the need to include an additional intrinsic dispersion to reach {chi}$^2$/dof $sim$ 1. This reduction in RMS is partially driven by an improved standardization of Shallow Silicon and 91T-like SNe.
We present predictions for hydrogen and helium emission line luminosities from circumstellar matter around Type Ia supernovae (SNe Ia) using time dependent photoionization modeling. ESO/VLT optical echelle spectra of the SN Ia 2000cx were taken befor
We place statistical constraints on Type Ia supernova (SN Ia) progenitors using 227 nebular phase spectra of 111 SNe Ia. We find no evidence of stripped companion emission in any of the nebular phase spectra. Upper limits are placed on the amount of
We compare models for Type Ia supernova (SN Ia) light curves and spectra with an extensive set of observations. The models come from a recent survey of 44 two-dimensional delayed-detonation models computed by Kasen, Roepke & Woosley (2009), each view
The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of $^{56}$Ni to $^{56}$Co at early times, and the decay of $^{56}$Co to $^{56}$Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emis
We present late-time spectra of eight Type Ia supernovae (SNe Ia) obtained at $>200$ days after peak brightness using the Gemini South and Keck telescopes. All of the SNe Ia in our sample were nearby, well separated from their host galaxys light, and