ﻻ يوجد ملخص باللغة العربية
We study the spectral diversity of Type Ia supernovae (SNe Ia) at maximum light using high signal-to-noise spectrophotometry of 173 SNe Ia from the Nearby Supernova Factory. We decompose the diversity of these spectra into different extrinsic and intrinsic components, and we construct a nonlinear parameterization of the intrinsic diversity of SNe Ia that preserves pairings of twin SNe Ia. We call this parameterization the Twins Embedding. Our methodology naturally handles highly nonlinear variability in spectra, such as changes in the photosphere expansion velocity, and uses the full spectrum rather than being limited to specific spectral line strengths, ratios or velocities. We find that the time evolution of SNe Ia near maximum light is remarkably similar, with 84.6% of the variance in common to all SNe Ia. After correcting for brightness and color, the intrinsic variability of SNe Ia is mostly restricted to specific spectral lines, and we find intrinsic dispersions as low as ~0.02 mag between 6600 and 7200 A. With a nonlinear three-dimensional model plus one dimension for color, we can explain 89.2% of the intrinsic diversity in our sample of SNe Ia, which includes several different kinds of peculiar SNe Ia. A linear model requires seven dimensions to explain a comparable fraction of the intrinsic diversity. We show how a wide range of previously-established indicators of diversity in SNe Ia can be recovered from the Twins Embedding. In a companion article, we discuss how these results an be applied to standardization of SNe Ia for cosmology.
From a sample of 12 well-observed Type Ia supernovae, we find clear evidence of correlations between early phase (U-B), (V-R), and (V-I) colors and the velocity shifts of the [Fe II] lambda 7155 and [Ni II] lambda 7378 nebular lines measured from lat
We show how spectra of Type Ia supernovae (SNe Ia) at maximum light can be used to improve cosmological distance estimates. In a companion article, we used manifold learning to build a three-dimensional parameterization of the intrinsic diversity of
We present 2603 spectra of 462 nearby Type Ia supernovae (SN Ia) obtained during 1993-2008 through the Center for Astrophysics Supernova Program. Most of the spectra were obtained with the FAST spectrograph at the FLWO 1.5m telescope and reduced in a
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here
Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse ex