ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate

119   0   0.0 ( 0 )
 نشر من قبل Mickael Rigault
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As part of an on-going effort to identify, understand and correct for astrophysics biases in the standardization of Type Ia supernovae (SNIa) for cosmology, we have statistically classified a large sample of nearby SNeIa into those located in predominantly younger or older environments. This classification is based on the specific star formation rate measured within a projected distance of 1kpc from each SN location (LsSFR). This is an important refinement compared to using the local star formation rate directly as it provides a normalization for relative numbers of available SN progenitors and is more robust against extinction by dust. We find that the SNeIa in predominantly younger environments are DY=0.163pm0.029 mag (5.7 sigma) fainter than those in predominantly older environments after conventional light-curve standardization. This is the strongest standardized SN Ia brightness systematic connected to host-galaxy environment measured to date. The well-established step in standardized brightnesses between SNeIa in hosts with lower or higher total stellar masses is smaller at DM=0.119pm0.032 mag (4.5 sigma), for the same set of SNeIa. When fit simultaneously, the environment age offset remains very significant, with DY=0.129pm0.032 mag (4.0 sigma), while the global stellar mass step is reduced to DM=0.064pm0.029 mag (2.2 sigma). Thus, approximately 70% of the variance from the stellar mass step is due to an underlying dependence on environment-based progenitor age. Standardization using only the SNeIa in younger environments reduces the total dispersion from 0.142pm0.008 mag to 0.120pm0.010 mag. We show that as environment ages evolve with redshift a strong bias on measurement of the dark energy equation of state parameters can develop. Fortunately, data to measure and correct for this effect is likely to be available for many next-generation experiments. [abstract shorten]


قيم البحث

اقرأ أيضاً

Supernova (SN) cosmology is based on the assumption that the width-luminosity relation (WLR) and the color-luminosity relation (CLR) in the type Ia SN luminosity standardization would not vary with progenitor age. Unlike this expectation, recent age datings of stellar populations in host galaxies have shown significant correlations between progenitor age and Hubble residual (HR). It was not clear, however, how this correlation arises from the SN luminosity standardization process, and how this would impact the cosmological result. Here we show that this correlation originates from a strong progenitor age dependence of the WLR and the CLR, in the sense that SNe from younger progenitors are fainter each at given light-curve parameters $x_1$ and $c$. This is reminiscent of Baades discovery of two Cepheid period-luminosity relations, and, as such, causes a serious systematic bias with redshift in SN cosmology. Other host properties show substantially smaller and insignificant differences in the WLR and CLR for the same dataset. We illustrate that the differences between the high-$z$ and low-$z$ SNe in the WLR and CLR, and in HR after the standardization, are fully comparable to those between the correspondingly young and old SNe at intermediate redshift, indicating that the observed dimming of SNe with redshift is most likely an artifact of over-correction in the luminosity standardization. When this systematic bias with redshift is properly taken into account, there is no or little evidence left for an accelerating universe, posing a serious question to one of the cornerstones of the concordance model.
91 - M. S. Bothwell 2011
We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z ~ 0, selected at IR and UV wavelengths from the IRAS IIFSCz catalogue, and the GALEX AIS respectively. We augment thes e with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy Survey (LVL), allowing us to extend these luminosity functions to lower luminosities (~10^6 L_sun), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the SFR distribution function for the local Universe. We find that it has a Schechter form, that the faint-end slope has a constant value (to the limits of our data) of {alpha} = -1.51 pm 0.08, and the characteristic SFR is 9.2 M_sun/yr. We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z ~ 0 of 0.025 pm 0.0016 M_sun/yr/Mpc^-3, of which ~ 20% is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 pm 1% is due to LIRGs, and 0.7 pm 0.2% is occuring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line of sight orientation effects as well as conventional internal extinction.
Recent analyses suggest that distance residuals measured from Type Ia supernovae (SNe Ia) are correlated with local host galaxy properties within a few kpc of the SN explosion. However, the well-established correlation with global host galaxy propert ies is nearly as significant, with a shift of 0.06 mag across a low to high mass boundary (the mass step). Here, with 273 SNe Ia at $z<0.1$, we investigate whether stellar masses and rest-frame $u-g$ colors of regions within 1.5 kpc of the SN Ia explosion site are significantly better correlated with SN distance measurements than global properties or properties measured at random locations in SN hosts. At $lesssim2sigma$ significance, local properties tend to correlate with distance residuals better than properties at random locations, though despite using the largest low-$z$ sample to date we cannot definitively prove that a local correlation is more significant than a random correlation. Our data hint that SNe observed by surveys that do not target a pre-selected set of galaxies may have a larger local mass step than SNe from surveys that do, an increase of $0.071pm0.036$ mag (2.0$sigma$). We find a $3sigma$ local mass step after global mass correction, evidence that SNe Ia should be corrected for their local mass, but we note that this effect is insignificant in the targeted low-$z$ sample. Only the local mass step remains significant at $>2sigma$ after global mass correction, and we conservatively estimate a systematic shift in H$_0$ measurements of -0.14 $textrm{km},textrm{s}^{-1}textrm{Mpc}^{-1}$ with an additional uncertainty of 0.14 $textrm{km},textrm{s}^{-1}textrm{Mpc}^{-1}$, $sim$10% of the present uncertainty.
We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR_Ia) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope (CFHT) Supernova Legacy Survey (SNLS). This analysis includes 286 sp ectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1<z<1.1. The volumetric SNR_Ia evolution is consistent with a rise to z~1.0 that follows a power-law of the form (1+z)^alpha, with alpha=2.11+/-0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star-formation history over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., proportional to t^-beta) yields values from beta=0.98+/-0.05 to beta=1.15+/-0.08 depending on the parameterization of the cosmic star formation history. A two-component model, where SNR_Ia is dependent on stellar mass (Mstellar) and star formation rate (SFR) as SNR_Ia(z)=AxMstellar(z) + BxSFR(z), yields the coefficients A=1.9+/-0.1 SNe/yr/M_solar and B=3.3+/-0.2 SNe/yr/(M_solar/yr). More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8<s<1.0) is similar, within our measurement errors, to that of the slower objects (1.0<s<1.3) out to z~0.8.
We use multi-wavelength, matched aperture, integrated photometry from GALEX, SDSS and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). Our data corroborate well-known features t hat have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshhold of ~10^10 M_sun, indicating that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction sub-sample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age -- 56Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshhold of ~3 Gyr for SN Ia hosts, above which they are less likely to produce SNe Ia with 56Ni masses above ~0.5 M_sun. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا