ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these as trophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.
(Abridged) We present a spectral analysis of a new, flux-limited sample of 72 X-ray selected clusters of galaxies identified with the X-ray Telescope (XRT) on board the Swift satellite down to a flux limit of ~10-14 erg/s/cm2 (SWXCS, Tundo et al. 201 2). We carry out a detailed X-ray spectral analysis with the twofold aim of measuring redshifts and characterizing the properties of the Intra-Cluster Medium (ICM). Optical counterparts and spectroscopic or photometric redshifts are obtained with a cross-correlation with NED. Additional photometric redshifts are computed with a dedicated follow-up program with the TNG and a cross-correlation with the SDSS. We also detect the iron emission lines in 35% of the sample, and hence obtain a robust measure of the X-ray redshift zX. We use zX whenever the optical redshift is not available. Finally, for all the sources with measured redshift, background-subtracted spectra are fitted with a mekal model. We perform extensive spectral simulations to derive an empirical formula to account for fitting bias. The bias-corrected values are then used to investigate the scaling properties of the X-ray observables. Overall, we are able to characterize the ICM of 46 sources. The sample is mostly constituted by clusters with temperatures between 3 and 10 keV, plus 14 low-mass clusters and groups with temperatures below 3 keV. The redshift distribution peaks around z~0.25 and extends up to z~1, with 60% of the sample at 0.1<z<0.4. We derive the Luminosity-Temperature relation for these 46 sources, finding good agreement with previous studies. The quality of the SWXCS sample is comparable to other samples available in the literature and obtained with much larger X-ray telescopes. Our results have interesting implications for the design of future X-ray survey telescopes, characterised by good-quality PSF over the entire field of view and low background.
106 - Marco Bernardo 2014
Two of the most studied extensions of trace and testing equivalences to nondeterministic and probabilistic processes induce distinctions that have been questioned and lack properties that are desirable. Probabilistic trace-distribution equivalence di fferentiates systems that can perform the same set of traces with the same probabilities, and is not a congruence for parallel composition. Probabilistic testing equivalence, which relies only on extremal success probabilities, is backward compatible with testing equivalences for restricted classes of processes, such as fully nondeterministic processes or generative/reactive probabilistic processes, only if specific sets of tests are admitted. In this paper, n
Simulations based on experimental data obtained from multifragmenting quasi-fused nuclei produced in central $^{129}$Xe + $^{nat}$Sn collisions have been used to deduce event by event freeze-out properties in the thermal excitation energy range 4-12 AMeV [Nucl. Phys. A809 (2008) 111]. From these properties and the temperatures deduced from proton transverse momentum fluctuations, constrained caloric curves have been built. At constant average volumes caloric curves exhibit a monotonic behaviour whereas for constrained pressures a backbending is observed. Such results support the existence of a first order phase transition for hot nuclei.
Micrometeoroids (cosmic dust with size between a few $mu$m and $sim$1 mm) dominate the annual extraterrestrial mass flux to the Earth. We investigate the range of physical processes occurring when micrometeoroids traverse the atmosphere. We compute t he time (and altitude) dependent mass loss, energy balance, and dynamics to identify which processes determine their survival for a range of entry conditions. We develop a general numerical model for the micrometeoroid-atmosphere interaction. The equations of motion, energy, and mass balance are simultaneously solved for different entry conditions (e.g. initial radii, incident speeds and angles). Several different physical processes are taken into account in the equation of energy and in the mass balance, in order to understand their relative roles and evolution during the micrometeoroid-atmosphere interaction. In particular, to analyze the micrometeoroid thermal history we include in the energy balance: collisions with atmospheric particles, micrometeoroid radiation emission, evaporation, melting, sputtering and kinetic energy of the ablated mass. Low entry velocities and grazing incidence angles favor micrometeoroid survival. Among those that survive, our model distinguishes (1) micrometeoroids who reach the melting temperature and for which melting is the most effective mass loss mechanism, and (2) micrometeoroids for which ablation due to evaporation causes most of the the mass loss. Melting is the most effective cooling mechanism. Sputtering-induced mass loss is negligible.
We present two new families of Wilson loop operators in N= 6 supersymmetric Chern-Simons theory. The first one is defined for an arbitrary contour on the three dimensional space and it resembles the Zarembos construction in N=4 SYM. The second one in volves arbitrary curves on the two dimensional sphere. In both cases one can add certain scalar and fermionic couplings to the Wilson loop so it preserves at least two supercharges. Some previously known loops, notably the 1/2 BPS circle, belong to this class, but we point out more special cases which were not known before. They could provide further tests of the gauge/gravity correspondence in the ABJ(M) case and interesting observables, exactly computable by localization
106 - Sandro Gonzi 2011
We present a study of jet production in association with W and Z bosons in proton-proton collisions at a centre-of-mass energy of 7 TeV using the full 2010 data set collected by CMS corresponding to an integrated luminosity of (35.9 +/- 1.4) inverse picobarn. We report the measurement of ratios s(V + >= n jets)/s(V) and s(V + >= n jets)/s(V + >= (n - 1) jets), where V represents either a W or a Z, s stands for the cross section and n stands for the number of jets.
54 - Marco Bernardo 2011
Labeled transition systems are typically used to represent the behavior of nondeterministic processes, with labeled transitions defining a one-step state to-state reachability relation. This model has been recently made more general by modifying the transition relation in such a way that it associates with any source state and transition label a reachability distribution, i.e., a function mapping each possible target state to a value of some domain that expresses the degree of one-step reachability of that target state. In this extended abstract, we show how the resulting model, called ULTraS from Uniform Labeled Transition System, can be naturally used to give semantics to a fully nondeterministic, a fully probabilistic, and a fully stochastic variant of a CSP-like process language.
The Milagro experiment has announced the discovery of an excess flux of TeV cosmic rays from the general direction of the heliotail, also close to the Galactic anticenter. We investigate the hypothesis that the excess cosmic rays were produced in the SN explosion that gave birth to the Geminga pulsar. The assumptions underlying our proposed scenario are that the Geminga supernova occurred about 3.4 10^5 years ago (as indicated by the spin down timescale), that a burst of cosmic rays was injected with total energy 10^49 erg (i.e., about 1% of a typical SN output), and that the Geminga pulsar was born with a positive radial velocity of 100--200 km s^-1. We find that our hypothesis is consistent with the available information. In a first variant (likely oversimplified), the cosmic rays have diffused according to the Bohm prescription (i.e., with a diffusion coefficient on the order of c times r_L, with c the speed of light and r_L the Larmor radius). An alternative scheme assumes that diffusion only occurred initially, and the final propagation to the Sun was a free streaming in a diverging magnetic field. If the observed cosmic ray excess does indeed arise from the Geminga SN explosion, the long--sought smoking gun connecting cosmic rays with supernovae would finally be at hand. It could be said that, while looking for the smoking gun, we were hit by the bullets themselves.
77 - E. Sani 2007
We present the results of infrared L-band (3-4 micron) and M-band (4-5 micron) VLT-ISAAC spectroscopy of five bright Ultraluminous InfraRed Galaxies (ULIRGs) hosting an AGN. From our analysis we distinguish two types of sources: ULIRGs where the AGN is unobscured (with a flat continuum and no absorption features at 3.4 micron and 4.6 micron), and those with highly obscured AGNs (with a steep, reddened continuum and absorption features due to hydrocarbons and CO). Starburst activity is also present in all of the sources as inferred from the 3.3 micron PAH emission line. A strong correlation is found between continuum slope and CO optical depth, which suggests that deep carbon monoxide absorption is a common feature of highly obscured ULIRG AGN. Finally we show that the AGN dominates the 3-4 micron emission, even if its contribution to the bolometric luminosity is small.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا