ترغب بنشر مسار تعليمي؟ اضغط هنا

General relativistic neutron stars with twisted magnetosphere

362   0   0.0 ( 0 )
 نشر من قبل Antonio Graziano Pili
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.



قيم البحث

اقرأ أيضاً

We study the magnetosphere of a slowly rotating magnetized neutron star subject to toroidal oscillations in the relativistic regime. Under the assumption of a zero inclination angle between the magnetic moment and the angular momentum of the star, we analyze the Goldreich-Julian charge density and derive a second-order differential equation for the electrostatic potential. The analytical solution of this equation in the polar cap region of the magnetosphere shows the modification induced by stellar toroidal oscillations on the accelerating electric field and on the charge density. We also find that, after decomposing the oscillation velocity in terms of spherical harmonics, the first few modes with $m=0,1$ are responsible for energy losses that are almost linearly dependent on the amplitude of the oscillation and that, for the mode $(l,m)=(2,1)$, can be a factor $sim8$ larger than the rotational energy losses, even for a velocity oscillation amplitude at the star surface as small as $eta=0.05 Omega R$. The results obtained in this paper clarify the extent to which stellar oscillations are reflected in the time variation of the physical properties at the surface of the rotating neutron star, mainly by showing the existence of a relation between $Pdot{P}$ and the oscillation amplitude. Finally, we propose a qualitative model for the explanation of the phenomenology of intermittent pulsars in terms of stellar oscillations that are periodically excited by star glitches.
Magnetic fields play a critical role in the phenomenology of neutron stars. There is virtually no observable aspect which is not governed by them. Despite this, only recently efforts have been done to model magnetic fields in the correct general rela tivistic regime, characteristic of these compact objects. In this work we present, for the first time a comprehensive and detailed parameter study, in general relativity, of the role that the current distribution, and the related magnetic field structure, have in determining the precise structure of neutron stars. In particular, we show how the presence of localized currents can modify the field strength at the stellar surface, and we look for general trends, both in terms of energetic properties, and magnetic field configurations. Here we verify that, among other things, for a large class of different current distributions the resulting magnetic configurations are always dominated by the poloidal component of the current.
149 - C. Reisswig , R. Haas , C. D. Ott 2012
We present a new three-dimensional general-relativistic hydrodynamic evolution scheme coupled to dynamical spacetime evolutions which is capable of efficiently simulating stellar collapse, isolated neutron stars, black hole formation, and binary neut ron star coalescence. We make use of a set of adapted curvi-linear grids (multipatches) coupled with flux-conservative cell-centered adaptive mesh refinement. This allows us to significantly enlarge our computational domains while still maintaining high resolution in the gravitational-wave extraction zone, the exterior layers of a star, or the region of mass ejection in merging neutron stars. The fluid is evolved with a high-resolution shock capturing finite volume scheme, while the spacetime geometry is evolved using fourth-order finite differences. We employ a multi-rate Runge-Kutta time integration scheme for efficiency, evolving the fluid with second-order and the spacetime geometry with fourth-order integration, respectively. We validate our code by a number of benchmark problems: a rotating stellar collapse model, an excited neutron star, neutron star collapse to a black hole, and binary neutron star coalescence. The test problems, especially the latter, greatly benefit from higher resolution in the gravitational-wave extraction zone, causally disconnected outer boundaries, and application of Cauchy-characteristic gravitational-wave extraction. We show that we are able to extract convergent gravitational-wave modes up to (l,m)=(6,6). This study paves the way for more realistic and detailed studies of compact objects and stellar collapse in full three dimensions and in large computational domains. The multipatch infrastructure and the improvements to mesh refinement and hydrodynamics codes discussed in this paper will be made available as part of the open-source Einstein Toolkit.
We study the dynamical evolution of a phase-transition-induced collapse neutron star to a hybrid star, which consists of a mixture of hadronic matter and strange quark matter. The collapse is triggered by a sudden change of equation of state, which r esult in a large amplitude stellar oscillation. The evolution of the system is simulated by using a 3D Newtonian hydrodynamic code with a high resolution shock capture scheme. We find that both the temperature and the density at the neutrinosphere are oscillating with acoustic frequency. However, they are nearly 180$^{circ}$ out of phase. Consequently, extremely intense, pulsating neutrino/antineutrino fluxes will be emitted periodically. Since the energy and density of neutrinos at the peaks of the pulsating fluxes are much higher than the non-oscillating case, the electron/positron pair creation rate can be enhanced dramatically. Some mass layers on the stellar surface can be ejected by absorbing energy of neutrinos and pairs. These mass ejecta can be further accelerated to relativistic speeds by absorbing electron/positron pairs, created by the neutrino and antineutrino annihilation outside the stellar surface. The possible connection between this process and the cosmological Gamma-ray Bursts is discussed.
Recent work highlights that tens of Galactic double neutron stars are likely to be detectable in the millihertz band of the space-based gravitational-wave observatory, LISA. Kyutoku and Nishino point out that some of these binaries might be detectabl e as radio pulsars using the Square Kilometer Array (SKA). We point out that the joint LISA+SKA detection of a $f_text{gw}gtrsim$1 mHz binary, corresponding to a binary period of $lesssim$400 s, would enable precision measurements of ultra-relativistic phenomena. We show that, given plausible assumptions, multi-messenger observations of ultra-relativistic binaries can be used to constrain the neutron star equation of state with remarkable fidelity. It may be possible to measure the mass-radius relation with a precision of $approx$0.2% after 10 yr of observations with the SKA. Such a measurement would be roughly an order of magnitude more precise than possible with other proposed observations. We summarize some of the other remarkable science made possible with multi-messenger observations of millihertz binaries, and discuss the prospects for the detection of such objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا