ﻻ يوجد ملخص باللغة العربية
Micrometeoroids (cosmic dust with size between a few $mu$m and $sim$1 mm) dominate the annual extraterrestrial mass flux to the Earth. We investigate the range of physical processes occurring when micrometeoroids traverse the atmosphere. We compute the time (and altitude) dependent mass loss, energy balance, and dynamics to identify which processes determine their survival for a range of entry conditions. We develop a general numerical model for the micrometeoroid-atmosphere interaction. The equations of motion, energy, and mass balance are simultaneously solved for different entry conditions (e.g. initial radii, incident speeds and angles). Several different physical processes are taken into account in the equation of energy and in the mass balance, in order to understand their relative roles and evolution during the micrometeoroid-atmosphere interaction. In particular, to analyze the micrometeoroid thermal history we include in the energy balance: collisions with atmospheric particles, micrometeoroid radiation emission, evaporation, melting, sputtering and kinetic energy of the ablated mass. Low entry velocities and grazing incidence angles favor micrometeoroid survival. Among those that survive, our model distinguishes (1) micrometeoroids who reach the melting temperature and for which melting is the most effective mass loss mechanism, and (2) micrometeoroids for which ablation due to evaporation causes most of the the mass loss. Melting is the most effective cooling mechanism. Sputtering-induced mass loss is negligible.
The Earth-Moon system is unusual in several respects. The Moon is roughly 1/4 the radius of the Earth - a larger satellite-to-planet size ratio than all known satellites other than Plutos Charon. The Moon has a tiny core, perhaps with only ~1% of its
The next step on the path toward another Earth is to find atmospheres similar to those of Earth and Venus - high-molecular-weight (secondary) atmospheres - on rocky exoplanets. Many rocky exoplanets are born with thick (> 10 kbar) H$_2$-dominated atm
The discovery of a large putative impact crater buried beneath Hiawatha Glacier along the margin of the northwestern Greenland Ice Sheet has reinvigorated interest into the nature of large impacts into thick ice masses. This circular structure is rel
Impacts between planetary-sized bodies can explain the origin of satellites orbiting large ($R>500$~km) trans-Neptunian objects. Their water rich composition, along with the complex phase diagram of water, make it important to accurately model the wi
Aims: The secondary atmospheres of terrestrial planets form and evolve as a consequence of interaction with the interior over geological time. We aim to quantify the influence of planetary bulk composition on the interior--atmosphere evolution for Ea