ترغب بنشر مسار تعليمي؟ اضغط هنا

The Milagro anticenter hot spots: cosmic rays from the Geminga supernova ?

45   0   0.0 ( 0 )
 نشر من قبل Marco Salvati
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Milagro experiment has announced the discovery of an excess flux of TeV cosmic rays from the general direction of the heliotail, also close to the Galactic anticenter. We investigate the hypothesis that the excess cosmic rays were produced in the SN explosion that gave birth to the Geminga pulsar. The assumptions underlying our proposed scenario are that the Geminga supernova occurred about 3.4 10^5 years ago (as indicated by the spin down timescale), that a burst of cosmic rays was injected with total energy 10^49 erg (i.e., about 1% of a typical SN output), and that the Geminga pulsar was born with a positive radial velocity of 100--200 km s^-1. We find that our hypothesis is consistent with the available information. In a first variant (likely oversimplified), the cosmic rays have diffused according to the Bohm prescription (i.e., with a diffusion coefficient on the order of c times r_L, with c the speed of light and r_L the Larmor radius). An alternative scheme assumes that diffusion only occurred initially, and the final propagation to the Sun was a free streaming in a diverging magnetic field. If the observed cosmic ray excess does indeed arise from the Geminga SN explosion, the long--sought smoking gun connecting cosmic rays with supernovae would finally be at hand. It could be said that, while looking for the smoking gun, we were hit by the bullets themselves.

قيم البحث

اقرأ أيضاً

Both the acceleration of cosmic rays (CR) in supernova remnant shocks and their subsequent propagation through the random magnetic field of the Galaxy deem to result in an almost isotropic CR spectrum. Yet the MILAGRO TeV observatory discovered a sha rp ($sim10^{circ})$ arrival anisotropy of CR nuclei. We suggest a mechanism for producing a weak and narrow CR beam which operates en route to the observer. The key assumption is that CRs are scattered by a strongly anisotropic Alfven wave spectrum formed by the turbulent cascade across the local field direction. The strongest pitch-angle scattering occurs for particles moving almost precisely along the field line. Partly because this direction is also the direction of minimum of the large scale CR angular distribution, the enhanced scattering results in a weak but narrow particle excess. The width, the fractional excess and the maximum momentum of the beam are calculated from a systematic transport theory depending on a single scale $l$ which can be associated with the longest Alfven wave, efficiently scattering the beam. The best match to all the three characteristics of the beam is achieved at $lsim1$pc. The distance to a possible source of the beam is estimated to be within a few 100pc. Possible approaches to determination of the scale $l$ from the characteristics of the source are discussed. Alternative scenarios of drawing the beam from the galactic CR background are considered. The beam related large scale anisotropic CR component is found to be energy independent which is also consistent with the observations.
128 - C.D. Dermer , G. Powale 2012
Context: Cosmic rays are thought to be accelerated at supernova remnant (SNR) shocks, but conclusive evidence is lacking. Aims: New data from ground-based gamma-ray telescopes and the Large Area Telescope on the Fermi Gamma-ray Space Telescope are us ed to test this hypothesis. A simple model for gamma-ray production efficiency is compared with measured gamma-ray luminosities of SNRs, and the GeV to TeV fluxes ratios of SNRs are examined for correlations with SNR ages. Methods: The supernova explosion is modeled as an expanding spherical shell of material that sweeps up matter from the surrounding interstellar medium (ISM). The accumulated kinetic energy of the shell, which provides the energy available for nonthermal particle acceleration, changes when matter is swept up from the ISM and the SNR shell decelerates. A fraction of this energy is assumed to be converted into the energy of cosmic-ray electrons or protons. Three different particle radiation processes---nuclear pion-production interactions, nonthermal electron bremsstrahlung, and Compton scattering---are considered. Results: The efficiencies for gamma-ray production by these three processes are compared with gamma-ray luminosities of SNRs. Our results suggest that SNRs become less gamma-ray luminous at >~ 10^4 yr, and are consistent with the hypothesis that supernova remnants accelerate cosmic rays with an efficiency of ~10% for the dissipation of kinetic energy into nonthermal cosmic rays. Weak evidence for an increasing GeV to TeV flux ratio with SNR age is found.
137 - L. Nava , S. Recchia , S. Gabici 2019
We study the problem of the escape and transport of Cosmic-Rays (CR) from a source embedded in a fully ionised, hot phase of the interstellar medium (HIM). In particular, we model the CR escape and their propagation in the source vicinity taking into account excitation of Alfvenic turbulence by CR streaming and mechanisms damping the self-excited turbulence itself. Our estimates of escape radii and times result in large values (100 pc, $2times10^5$ yr) for particle energies $lesssim20$ GeV and smaller values for particles with increasing energies (35 pc and 14 kyr at 1 TeV). These escape times and radii, when used as initial conditions for the CR propagation outside the source, result in relevant suppression of the diffusion coefficient (by a factor 5-10) on time-scales comparable with their (energy dependent) escape time-scale. The damping mechanisms are fast enough that even on shorter time scales the Alfvenic turbulence is efficiently damped, and the ratio between random and ordered component of the magnetic field is $delta B/B_0ll 1$, justifying the use of quasi-linear theory. In spite of the suppressed diffusion coefficient, and then the increased residence time in the vicinity (<200 pc) of their source, the grammage accumulated by CRs after their escape is found to be negligible (at all energies) as compared to the one accumulated while diffusing in the whole Galaxy, due to the low density of the HIM.
74 - E.G. Berezhko 2014
We analyze the results of recent measurements of Galactic cosmic ray (GCRs) energy spectra and the spectra of nonthermal emission from supernova remnants (SNRs) in order to determine their consistency with GCR origin in SNRs. It is shown that the mea sured primary and secondary CR nuclei energy spectra as well as the observed positron-to-electron ratio are consistent with the origin of GCRs up to the energy 10^17 eV in SNRs. Existing SNR emission data provide evidences for efficient CR production in SNRs accompanied by significant magnetic field amplification. In some cases the nature of the detected gamma-ray emission is difficult to determine because key SNR parameters are not known or poorly constrained.
We present the discovery of several new regions of interaction between the ejecta and equatorial circumstellar ring of SN1987A, an interaction leading to a much expanded development of the supernova remnant. We also trace the development of the first such hot spot, discovered in 1997, back to 1995. Later hot spots seem to have emerged by early 1999. We discuss mechanisms for the long delay between the first and later spots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا