ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - E.B. Feldman , E.I. Kuznetsova , 2015
We study the remote creation of the polarization and intensity of the first-order coherence (or coherence intensity) in long spin-1/2 chains with one qubit sender and receiver. Therewith we use a physically motivated initial condition with the pure s tate of the sender and the thermodynamical equilibrium state of the other nodes. The main part of the creatable region is a one-to-one map of the initial-state (control) parameters, except the small subregion twice covered by the control parameters, which appears owing to the chosen initial state. The polarization and coherence intensity behave differently in the state creation process. In particular, the coherence intensity can not reach any significant value unless the polarization is large in long chains (unlike the short ones), but the opposite is not true. The coherence intensity vanishes with an increase in the chain length, while the polarization (by absolute value) is not sensitive to this parameter. We represent several characteristics of the creatable polarization and coherence intensity and describe their relation to the parameters of the initial state. The link to the eigenvalue-eigenvector parametrization of the receivers state-space is given.
We study quantum correlations in a bipartite heteronuclear $(N-1)times1$ system in an external magnetic field. The system consists of a spin ring with an arbitrary number $N-1$ of spins on the ring and one spin in its center. The spins on the ring ar e connected by secular dipole-dipole interactions and interact with the central spin through the Heisenberg $zz$-interaction. We show that the quantum discord, describing quantum correlations between the ring and the central spin, can be obtained analytically for this model in the high temperature approximation. The model allows us to find contributions of different parts of the spin-spin interactions to quantum correlations. We also investigate the evolution of quantum and classical correlations at different numbers of spins.
163 - E.B. Feldman , A.I. Zenchuk 2014
We investigate the Jordan-Wigner fermion clusters with the stationary distributed pairwise quantum discord. Such clusters appear after the Jordan-Wigner transformation of a spin chain governed by the nearest-neighbor XY-Hamiltonian with the particula r initial state having one polarized node. We show that the quantum discord stationarity in such systems is not destroyed by the parasitic polarization of at least two types. First type appears because the initial state with a single polarized node is hardly realizable experimentally, so that the low polarization of neighboring nodes must be taken into account. Second, the additional noise-polarization of all nodes is unavoidable. Although the stationarity may not be destroyed by perturbations of the above two types, the parasitic polarizations deform the distribution of the pairwise discord and may destroy the clusters of correlated fermions with equal pairwise discords. Such deformations are studied in this paper.
For the first time, we compute the quantum discord in bipartite systems containing up to nine qubits. An analytical expression is obtained for the discord in a bipartite system with three qubits. The dependence of the discord on the temperature and the structural parameter of the model is studied.
106 - E.B. Feldman , A.N. Pyrkov 2011
A phenomenological theory of spin-lattice relaxation of multiple-quantum coherences in systems of two dipolar coupled spins at low temperatures is developed. Intensities of multiple-quantum NMR coherences depending on the spin-lattice relaxation time are obtained. It is shown that the theory is also applicable to finite spin chains when the approximation of nearest neighbour interaction is used. An application of this theory to an estimation of the influence of decoherence processes on quantum entanglement and its fluctuations is briefly discussed.
This article is devoted to the development of analytical and numerical approaches to the problem of the end-to-end quantum state transfer along the spin-1/2 chain using two methods: (a) a homogeneous spin chain with week end bonds and equal Larmor fr equencies and (b) a homogeneous spin chain with end Larmor frequencies different from inner ones. A tridiagonal matrix representation of the XY Hamiltonian with nearest neighbor interactions relevant to the quantum state transfer is exactly diagonalized for a combination of the above two methods. In order to take into account interactions of the remote spins we used numerical simulations of the quantum state transfer in ten-node chains. We compare the state transfer times obtained using the two above methods for chains governed by the both XY and XXZ Hamiltonians and using both nearest neighbor and all node interactions.
We consider the adiabatic demagnetization in the rotating reference frame (ADRF) of a system of dipolar coupled nuclear spins $s=1/2$ in the external magnetic field. The demagnetization starts with the offset of the external magnetic field (in freque ncy units) from the Larmor frequency being several times greater than the local dipolar field. For different subsystem sizes, we have found from numerical simulations the temperatures at which subsystems of a one-dimensional nine-spin chain and a plane nine-spin cluster become entangled. These temperatures are of the order of microkelvins and are almost independent of the subsystem size. There is a weak dependence of the temperature on the space dimension of the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا