ﻻ يوجد ملخص باللغة العربية
We consider the adiabatic demagnetization in the rotating reference frame (ADRF) of a system of dipolar coupled nuclear spins $s=1/2$ in the external magnetic field. The demagnetization starts with the offset of the external magnetic field (in frequency units) from the Larmor frequency being several times greater than the local dipolar field. For different subsystem sizes, we have found from numerical simulations the temperatures at which subsystems of a one-dimensional nine-spin chain and a plane nine-spin cluster become entangled. These temperatures are of the order of microkelvins and are almost independent of the subsystem size. There is a weak dependence of the temperature on the space dimension of the system.
The physics of interacting nuclear spins arranged in a crystalline lattice is typically described using a thermodynamic framework: a variety of experimental studies in bulk solid-state systems have proven the concept of a spin temperature to be not o
Adiabatic passage of two correlated electrons in three coupled quantum dots is shown to provide a robust and controlled way of distilling, transporting and detecting spin entanglement, as well as of measuring the rate of spin disentanglement. Employi
We experimentally isolate, characterize and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multi-pulse sequences on the electron spin that resonantly amplify the intera
Entanglement between individual spins can be detected by using thermodynamics quantities as entanglement witnesses. This applies to collective spins also, provided that their internal degrees of freedom are frozen, as in the limit of weakly-coupled n
Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals