ترغب بنشر مسار تعليمي؟ اضغط هنا

The recently discovered fast radio bursts (FRBs), presumably of extra-galactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dis persion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the HeII reionization and the IGM magnetic field. Finally we calculate the microlensing effect from an isolate, extragalctic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.
Millisecond duration bright radio pulses at 1.4-GHz with high dispersion measures (DM) were reported by Lorimer et al., Keane et al., and Thornton et al. Their all-sky rate is $approx 10^4$/day above $sim$1 Jy. Related events are Perytons -- similar pulsed, dispersed sources, but most certainly local. Suggested models of fast radio bursts (FRBs) can originate in the Earths atmosphere, in stellar coronae, in other galaxies, and even at cosmological distances. Using physically motivated assumptions combined with observed properties, we explore these models. In our analysis, we focus on the Lorimer event: a 30 Jy, 5-ms duration burst with DM$=$ 375 cm$^{-3}$ pc, exhibiting a steep frequency-dependent pulse width (the {it Sparker}). To be complete, we drop the assumption that high DMs are produced by plasma propagation and assume that the source produces pulses with frequency-dependent arrival time (chirped signals). Within this framework we explore a scenario in which Perytons, the {it Sparker}, and the FRBs are all atmospheric phenomenon occurring at different heights. This model is {it ad hoc} in that we cannot explain why Perytons at higher altitudes show greater DMs or exhibit narrower pulses. Nonetheless, we argue the {it Sparker} may be a Peryton. We end with two remarks. First, the detection of a single FRB by an interferometer with a kilometer (or longer) baseline will prove that FRBs are of extra-terrestrial origin. Second, we urge astronomers to pursue observations and understanding of Perytons since they form (at least) a formidable foreground for the FRBs.
We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova discovered by the Palomar Transient Factory. PTF11qcj is located at a distance of dL ~ 124 Mpc. Our observation s with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated supernova 1998bw (L_{5GHz} ~ 10^{29} erg/s/Hz). PTF11qcj is also detected in X-rays with the Chandra observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the supernova interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ~10^{-4} Msun/yr x (v_w/1000 km/s), and a velocity of ~(0.3-0.5)c for the fastest moving ejecta (at ~10d after explosion). However, these estimates are derived assuming the simplest model of supernova ejecta interacting with a smooth circumstellar material characterized by radial power-law density profile, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio light curve shows deviations from such a simple model, as well as a re-brightening at late times. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). An IR light echo from pre-existing dust is in agreement with our infrared data. Our analysis of pre-explosion data from the Palomar Transient Factory suggests that a precursor eruption of absolute magnitude M_r ~ -13 mag may have occurred ~ 2.5 yr prior to the supernova explosion. Based on our panchromatic follow-up campaign, we conclude that PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.
(Abridged) Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present observations of SN2010jl, including the first detection of a SN using NuSTAR. The total radiated luminosity of SN2010jl is extreme, at least 9e50 erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within ~1e16 cm of the progenitor was in excess of 10 solar masses, likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was ~6000 km/s, decelerating to ~2600 km/s about two years after maximum light. Our late-time NuSTAR+XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity two years after the SN maximum light -- measured to be in the range of 2000 to 4500 km/s if the ions and electrons are in equilibrium, and >~2000 km/s if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the optical data. We also show that the mean radial density distribution of the CSM roughly follows an r^-2 law. A possible explanation for the massive CSM with a wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years.
162 - I. Sagiv , A. Gal-Yam , E. O. Ofek 2013
The time-variable electromagnetic sky has been well-explored at a wide range of wavelengths. Numerous high-energy space missions take advantage of the dark Gamma-ray and X-ray sky and utilize very wide field detectors to provide almost continuous mon itoring of the entire celestial sphere. In visible light, new wide-field ground-based surveys cover wide patches of sky with ever decreasing cadence, progressing from monthly-weekly time scale surveys to sub-night sampling. In the radio, new powerful instrumentation offers unprecedented sensitivity over wide fields of view, with pathfinder experiments for even more ambitious programs underway. In contrast, the ultra-violet (UV) variable sky is relatively poorly explored, even though it offers exciting scientific prospects. Here, we review the potential scientific impact of a wide-field UV survey on the study of explosive and other transient events, as well as known classes of variable objects, such as active galactic nuclei and variable stars. We quantify our predictions using a fiducial set of observational parameters which are similar to those envisaged for the proposed ULTRASAT mission. We show that such a mission would be able to revolutionize our knowledge about massive star explosions by measuring the early UV emission from hundreds of events, revealing key physical parameters of the exploding progenitor stars. Such a mission would also detect the UV emission from many tens of tidal-disruption events of stars by super massive black holes at galactic nuclei and enable a measurement of the rate of such events. The overlap of such a wide-field UV mission with existing and planned gravitational-wave and high-energy neutrino telescopes makes it especially timely.
148 - E. O. Ofek , R. Laher , J. Surace 2012
We construct a photometrically calibrated catalog of non-variable sources from the Palomar Transient Factory (PTF) observations. The first version of this catalog presented here, the PTF photometric catalog 1.0, contains calibrated R_PTF-filter magni tudes for about 21 million sources brighter than magnitude 19, over an area of about 11233 deg^2. The magnitudes are provided in the PTF photometric system, and the color of a source is required in order to convert these magnitudes into other magnitude systems. We estimate that the magnitudes in this catalog have typical accuracy of about 0.02 mag with respect to magnitudes from the Sloan Digital Sky Survey. The median repeatability of our catalogs magnitudes for stars between 15 and 16 mag, is about 0.01 mag, and it is better than 0.03 mag for 95% of the sources in this magnitude range. The main goal of this catalog is to provide reference magnitudes for photometric calibration of visible light observations. Subseque
The Palomar Transient Factory (PTF) is a synoptic survey designed to explore the transient and variable sky in a wide variety of cadences. We use PTF observations of fields that were observed multiple times (>=10) per night, for several nights, to fi nd asteroids, construct their lightcurves and measure their rotation periods. Here we describe the pipeline we use to achieve these goals and present the results from the first four (overlapping) PTF fields analyzed as part of this program. These fields, which cover an area of 21 deg^2, were observed on four nights with a cadence of ~20 min. Our pipeline was able to detect 624 asteroids, of which 145 (~20%) were previously unknown. We present high quality rotation periods for 88 main-belt asteroids and possible period or lower limit on the period for an additional 85 asteroids. For the remaining 451 asteroids, we present lower limits on their photometric amplitudes. Three of the asteroids have lightcurves that are characteristic of binary asteroids. We estimate that implementing our search for all existing high-cadence PTF data will provide rotation periods for about 10,000 asteroids mainly in the magnitude range ~14 to ~20.
We present the discovery of PTF 10vgv, a Type Ic supernova detected by the Palomar Transient Factory, using the Palomar 48-inch telescope (P48). R-band observations of the PTF 10vgv field with P48 probe the supernova emission from its very early phas es (about two weeks before R-band maximum), and set limits on its flux in the week prior to the discovery. Our sensitive upper limits and early detections constrain the post-shock-breakout luminosity of this event. Via comparison to numerical (analytical) models, we derive an upper-limit of R lesssim 4.5 Rsun (R lesssim 1 Rsun) on the radius of the progenitor star, a direct indication in favor of a compact Wolf-Rayet star. Applying a similar analysis to the historical observations of SN 1994I, yields R lesssim 1/4 Rsun for the progenitor radius of this supernova.
We present the discovery and follow-up observations of a broad-line type-Ic supernova (SN), PTF 10bzf (SN 2010ah), detected by the Palomar Transient Factory (PTF) on 2010 February 23. The SN distance is cong 218 Mpc, greater than GRB 980425 / SN 1998 bw and GRB 060218 / SN 2006aj, but smaller than the other SNe firmly associated with gamma-ray bursts (GRBs). We conducted a multi-wavelength follow-up campaign with Palomar-48 inch, Palomar 60-inch, Gemini-N, Keck, Wise, Swift, the Allen Telescope Array, CARMA, WSRT, and EVLA. Here we compare the properties of PTF 10bzf with those of SN 1998bw and other broad-line SNe. The optical luminosity and spectral properties of PTF 10bzf suggest that this SN is intermediate, in kinetic energy and amount of 56Ni, between non GRB-associated SNe like 2002ap or 1997ef, and GRB-associated SNe like 1998bw. No X-ray or radio counterpart to PTF 10bzf was detected. X-ray upper-limits allow us to exclude the presence of an underlying X-ray afterglow as luminous as that of other SN-associated GRBs like GRB 030329 or GRB 031203. Early-time radio upper-limits do not show evidence for mildly-relativistic ejecta. Late-time radio upper-limits rule out the presence of an underlying off-axis GRB, with energy and wind density similar to the SN-associated GRB 030329 and GRB 031203. Finally, by performing a search for a GRB in the time window and at the position of PTF 10bzf, we find that no GRB in the IPN catalog could be associated with this SN.
We present broadband (gamma-ray, X-ray, near-infrared, optical, and radio) observations of the gamma-ray burst (GRB) 090709A and its afterglow in an effort to ascertain the origin of this high-energy transient. Previous analyses suggested that GRB 09 0709A exhibited quasi-periodic oscillations with a period of 8.06 s, a trait unknown in long-duration GRBs but typical of flares from soft gamma-ray repeaters. When properly accounting for the underlying shape of the power-density spectrum of GRB 090709A, we find no conclusive (> 3 sigma) evidence for the reported periodicity. In conjunction with the location of the transient (far from the Galactic plane and absent any nearby host galaxy in the local universe) and the evidence for extinction in excess of the Galactic value, we consider a magnetar origin relatively unlikely. A long-duration GRB, however, can account for the majority of the observed properties of this source. GRB 090709A is distinguished from other long-duration GRBs primarily by the large amount of obscuration from its host galaxy (A_K,obs >~ 2 mag).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا