ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment

144   0   0.0 ( 0 )
 نشر من قبل Alessandra Corsi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova discovered by the Palomar Transient Factory. PTF11qcj is located at a distance of dL ~ 124 Mpc. Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated supernova 1998bw (L_{5GHz} ~ 10^{29} erg/s/Hz). PTF11qcj is also detected in X-rays with the Chandra observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the supernova interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ~10^{-4} Msun/yr x (v_w/1000 km/s), and a velocity of ~(0.3-0.5)c for the fastest moving ejecta (at ~10d after explosion). However, these estimates are derived assuming the simplest model of supernova ejecta interacting with a smooth circumstellar material characterized by radial power-law density profile, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio light curve shows deviations from such a simple model, as well as a re-brightening at late times. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). An IR light echo from pre-existing dust is in agreement with our infrared data. Our analysis of pre-explosion data from the Palomar Transient Factory suggests that a precursor eruption of absolute magnitude M_r ~ -13 mag may have occurred ~ 2.5 yr prior to the supernova explosion. Based on our panchromatic follow-up campaign, we conclude that PTF11qcj fits the expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.



قيم البحث

اقرأ أيضاً

We present High Sensitivity Array (HSA) and enhanced Multi Element Remotely Linked Interferometer Network (eMERLIN) observations of the radio-loud broad-lined type Ic supernova PTF11qcj obtained $sim7.5$ years after the explosion. Previous observatio ns of this supernova at 5.5 yrs since explosion showed a double-peaked radio light curve accompanied by a detection in the X-rays, but no evidence for broad H$alpha$ spectral features. The Very Long Baseline Interferometry (VLBI) observations presented here show that the PTF11qcj GHz radio ejecta remains marginally resolved at the sub-milliarcsecond level at $approx 7.5$ yrs after the explosion, pointing toward a non-relativistic expansion. Our VLBI observations thus favor a scenario in which the second peak of the PTF11qcj radio light curve is related to strong interaction of the supernova ejecta with a circumstellar medium of variable density, rather than to the emergence of an off-axis jet. Continued VLBI monitoring of PTF11qcj in the radio may strengthen further this conclusion.
We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor o f ~50 over 3.7 years, decaying exponentially with a characteristic time of 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8 southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant. If G333.9+0.0 is a supernova remnant then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggests that these two objects could be physically associated.
Prior to explosion, a supernova progenitor slowly loses significant amounts of its hydrogen envelope in a stellar wind. After the explosion, the blastwave interacts with this wind producing synchrotron emission. A year of radio observations allows us to probe the progenitor evolution for a thousand years. The EVLA and SKA would represent more than an order of magnitude improvement in our ability to explore the pre-explosion lives of a significantly large population of supernova progenitor stars. It will allow us to move beyond the crude optical classifications and develop a deeper physical understanding of how massive stars live and die.
We present observations of SN 2015bn (= PS15ae = CSS141223-113342+004332 = MLS150211-113342+004333), a Type I superluminous supernova (SLSN) at redshift $z=0.1136$. As well as being one of the closest SLSNe I yet discovered, it is intrinsically brigh ter ($M_Uapprox-23.1$) and in a fainter galaxy ($M_Bapprox-16.0$) than other SLSNe at $zsim0.1$. We used this opportunity to collect the most extensive dataset for any SLSN I to date, including densely-sampled spectroscopy and photometry, from the UV to the NIR, spanning $-$50 to +250 days from optical maximum. SN 2015bn fades slowly, but exhibits surprising undulations in the light curve on a timescale of 30-50 days, especially in the UV. The spectrum shows extraordinarily slow evolution except for a rapid transformation between +7 and +20-30 days. No narrow emission lines from slow-moving material are observed at any phase. We derive physical properties including the bolometric luminosity, and find slow velocity evolution and non-monotonic temperature and radial evolution. A deep radio limit rules out a healthy off-axis gamma-ray burst, and places constraints on the pre-explosion mass loss. The data can be consistently explained by a $gtrsim10,{rm M}_odot$ stripped progenitor exploding with $sim 10^{51},$erg kinetic energy, forming a magnetar with a spin-down timescale of $sim20$ days (thus avoiding a gamma-ray burst) that reheats the ejecta and drives ionization fronts. The most likely alternative scenario -- interaction with $sim20,{rm M}_odot$ of dense, inhomogeneous circumstellar material -- can be tested with continuing radio follow-up.
106 - M. L. Ahnen 2017
The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. We report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10 deg - 20 deg. The multi-instrument campaign was conducted between 2012 Nov. and 2013 Jan., and involved observations with MAGIC, Fermi, INTEGRAL, Swift, OVRO, MOJAVE and EVN. These observations were complemented with archival data from the AllWISE and 2MASS catalogs. A one-zone synchrotron self-Compton model was applied to describe the broad-band spectral energy distribution. IC 310 showed an extraordinary TeV flare at the beginning of the campaign, followed by a low, but still detectable TeV flux. Compared to previous measurements, the spectral shape was found to be steeper during the low emission state. Simultaneous observations in the soft X-ray band showed an enhanced energy flux state and a harder-when-brighter spectral shape behaviour. No strong correlated flux variability was found in other frequency regimes. The broad-band spectral energy distribution obtained from these observations supports the hypothesis of a double-hump structure. The harder-when-brighter trend in the X-ray and VHE emission is consistent with the behaviour expected from a synchrotron self-Compton scenario. The contemporaneous broad-band spectral energy distribution is well described with a one-zone synchrotron self-Compton model using parameters that are comparable to those found for other gamma-ray-emitting misaligned blazars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا