ترغب بنشر مسار تعليمي؟ اضغط هنا

Science with a wide-field UV transient explorer

163   0   0.0 ( 0 )
 نشر من قبل Ilan Sagiv
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The time-variable electromagnetic sky has been well-explored at a wide range of wavelengths. Numerous high-energy space missions take advantage of the dark Gamma-ray and X-ray sky and utilize very wide field detectors to provide almost continuous monitoring of the entire celestial sphere. In visible light, new wide-field ground-based surveys cover wide patches of sky with ever decreasing cadence, progressing from monthly-weekly time scale surveys to sub-night sampling. In the radio, new powerful instrumentation offers unprecedented sensitivity over wide fields of view, with pathfinder experiments for even more ambitious programs underway. In contrast, the ultra-violet (UV) variable sky is relatively poorly explored, even though it offers exciting scientific prospects. Here, we review the potential scientific impact of a wide-field UV survey on the study of explosive and other transient events, as well as known classes of variable objects, such as active galactic nuclei and variable stars. We quantify our predictions using a fiducial set of observational parameters which are similar to those envisaged for the proposed ULTRASAT mission. We show that such a mission would be able to revolutionize our knowledge about massive star explosions by measuring the early UV emission from hundreds of events, revealing key physical parameters of the exploding progenitor stars. Such a mission would also detect the UV emission from many tens of tidal-disruption events of stars by super massive black holes at galactic nuclei and enable a measurement of the rate of such events. The overlap of such a wide-field UV mission with existing and planned gravitational-wave and high-energy neutrino telescopes makes it especially timely.

قيم البحث

اقرأ أيضاً

The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument which will be deployed on a dedicated 1 meter robotic telescope at Palomar Observatory. WINTER will perform a seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r-process material in binary neutron star (BNS) merger remnants detected by LIGO. We describe the scientific goals and survey design of the WINTER instrument. With a dedicated trigger and the ability to map the full LIGO O4 positional error contour in the IR to a distance of 190 Mpc within four hours, WINTER will be a powerful kilonova discovery engine and tool for multi-messenger astrophysics investigations. In addition to follow-up observations of merging binaries, WINTER will facilitate a wide range of time-domain astronomical observations, all the while building up a deep coadded image of the static infrared sky suitable for survey science. WINTERs custom camera features six commercial large-format Indium Gallium Arsenide (InGaAs) sensors and a tiled optical system which covers a $>$1-square-degree field of view with 90% fill factor. The instrument observes in Y, J and a short-H (Hs) band tuned to the long-wave cutoff of the InGaAs sensors, covering a wavelength range from 0.9 - 1.7 microns. We present the design of the WINTER instrument and current progress towards final integration at Palomar Observatory and commissioning planned for mid-2021.
Wide-Field MAXI (WF-MAXI: Wide-Field Monitor of All-sky X-ray Image) is a proposed mission to detect and localize X-ray transients including electro-magnetic counterparts of gravitational-wave events such as gamma-ray bursts and supernovae etc., whic h are expected to be directly detected for the first time in late 2010s by the next generation gravitational telescopes such as Advanced LIGO and KAGRA. The most distinguishing characteristics of WF-MAXI are a wide energy range from 0.7 keV to 1 MeV and a large field of view (~25 % of the entire sky), which are realized by two main instruments: (i) Soft X-ray Large Solid Angle Camera (SLC) which consists of four pairs of crisscross coded aperture cameras using CCDs as one-dimensional fast-readout detectors covering 0.7 - 12 keV and (ii) Hard X-ray Monitor (HXM) which is a multi-channel array of crystal scintillators coupled with avalanche photo-diodes covering 20 keV - 1 MeV.
We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by GALEX with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early-type galaxy at redshift z=0.4046 that exhibits no evidence for star formation or AGN activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically-selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ~0.002M_sun, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the VLA over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.
The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in th e development of time domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities which provided funding (partnership) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r $sim$ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei and tidal disruption events, stellar variability, and Solar System objects.
93 - P. Rosati , S. Borgani , R. Gilli 2010
The Wide Field X-Ray Telescope (WFXT) is a medium-class mission designed to be 2-orders-of-magnitude more sensitive than any previous or planned X-ray mission for large area surveys and to match in sensitivity the next generation of wide-area optical , IR and radio surveys. Using an innovative wide-field X-ray optics design, WFXT provides a field of view of 1 square degree (10 times Chandra) with an angular resolution of 5 (Half Energy Width, HEW) nearly constant over the entire field of view, and a large collecting area (up to 1 m^2 at 1 keV, > 10x Chandra) over the 0.1-7 keV band. WFXTs low-Earth orbit also minimizes the particle background. In five years of operation, WFXT will carry out three extragalactic surveys at unprecedented depth and address outstanding questions in astrophysics, cosmology and fundamental physics. In this article, we illustrate the mission concept and the connection between science requirements and mission parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا