ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Tails, an open-source deep-learning framework for the identification and localization of comets in the image data of the Zwicky Transient Facility (ZTF), a robotic optical time-domain survey currently in operation at the Palomar Observator y in California, USA. Tails employs a custom EfficientDet-based architecture and is capable of finding comets in single images in near real time, rather than requiring multiple epochs as with traditional methods. The system achieves state-of-the-art performance with 99% recall, 0.01% false positive rate, and 1-2 pixel root mean square error in the predicted position. We report the initial results of the Tails efficiency evaluation in a production setting on the data of the ZTF Twilight survey, including the first AI-assisted discovery of a comet (C/2020 T2) and the recovery of a comet (P/2016 J3 = P/2021 A3).
The Zwicky Transient Facility (ZTF) has been observing the entire northern sky since the start of 2018 down to a magnitude of 20.5 ($5 sigma$ for 30s exposure) in $g$, $r$, and $i$ filters. Over the course of two years, ZTF has obtained light curves of more than a billion sources, each with 50-1000 epochs per light curve in $g$ and $r$, and fewer in $i$. To be able to use the information contained in the light curves of variable sources for new scientific discoveries, an efficient and flexible framework is needed to classify them. In this paper, we introduce the methods and infrastructure which will be used to classify all ZTF light curves. Our approach aims to be flexible and modular and allows the use of a dynamical classification scheme and labels, continuously evolving training sets, and the use of different machine learning classifier types and architectures. With this setup, we are able to continuously update and improve the classification of ZTF light curves as new data becomes available, training samples are updated, and new classes need to be incorporated.
The current generation of all-sky surveys is rapidly expanding our ability to study variable and transient sources. These surveys, with a variety of sensitivities, cadences, and fields of view, probe many ranges of timescale and magnitude. Data from the Zwicky Transient Facility (ZTF) yields an opportunity to find variables on timescales from minutes to months. In this paper, we present the codebase, ztfperiodic, and the computational metrics employed for the catalogue based on ZTFs Second Data Release. We describe the publicly available, graphical-process-unit optimized period-finding algorithms employed, and highlight the benefit of existing and future graphical-process-unit clusters. We show how generating metrics as input to catalogues of this scale is possible for future ZTF data releases. Further work will be needed for future data from the Vera C. Rubin Observatorys Legacy Survey of Space and Time.
The Zwicky Transient Facility (ZTF) is conducting a nightly public survey of all 13 TESS northern sectors in 2019-2020. ZTF will observe the portions of the current TESS sectors visible from Palomar Observatory each night. Each ZTF pointing will have one exposure each with $g$ and $r$ filters, totaling two images per night. ZTF is also making additional nightly $g$- and $r$-band observations of denser stellar regions (e.g. near the Galactic Plane) to better facilitate variability studies of Galactic objects. The limiting magnitude of the ZTF observations is $approx$20.6 and ZTF saturates at magnitude $approx$13. ZTF will release data from TESS fields in three forms: nightly alerts distributed by established ZTF brokers, nightly alerts converted to JSON format are distributed via ZTFs bucket on Google Cloud as a tarball, and monthly photometric light curves also distributed via Google Cloud.
Efficient automated detection of flux-transient, reoccurring flux-variable, and moving objects is increasingly important for large-scale astronomical surveys. We present braai, a convolutional-neural-network, deep-learning real/bogus classifier desig ned to separate genuine astrophysical events and objects from false positive, or bogus, detections in the data of the Zwicky Transient Facility (ZTF), a new robotic time-domain survey currently in operation at the Palomar Observatory in California, USA. Braai demonstrates a state-of-the-art performance as quantified by its low false negative and false positive rates. We describe the open-source software tools used internally at Caltech to archive and access ZTFs alerts and light curves (Kowalski), and to label the data (Zwickyverse). We also report the initial results of the classifier deployment on the Edge Tensor Processing Units (TPUs) that show comparable performance in terms of accuracy, but in a much more (cost-) efficient manner, which has significant implications for current and future surveys.
We present DeepStreaks, a convolutional-neural-network, deep-learning system designed to efficiently identify streaking fast-moving near-Earth objects that are detected in the data of the Zwicky Transient Facility (ZTF), a wide-field, time-domain sur vey using a dedicated 47 sq. deg camera attached to the Samuel Oschin 48-inch Telescope at the Palomar Observatory in California, United States. The system demonstrates a 96-98% true positive rate, depending on the night, while keeping the false positive rate below 1%. The sensitivity of DeepStreaks is quantified by the performance on the test data sets as well as using known near-Earth objects observed by ZTF. The system is deployed and adapted for usage within the ZTF Solar-System framework and has significantly reduced human involvement in the streak identification process, from several hours to typically under 10 minutes per day.
We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R_e and an ultra-short orbital p eriod of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R_e and orbits its host star every 29.85 days. At a distance of just 45.8 +/- 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets masses. The outer planet is large enough that it likely has a thick gaseous envelope which could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope.
The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agencys Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the in terest of studying planet - satellite systems. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. We achieved, on average, mHz precision (30 {mu}m/s at a 10 seconds integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to ~50 m.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا