ﻻ يوجد ملخص باللغة العربية
We present Tails, an open-source deep-learning framework for the identification and localization of comets in the image data of the Zwicky Transient Facility (ZTF), a robotic optical time-domain survey currently in operation at the Palomar Observatory in California, USA. Tails employs a custom EfficientDet-based architecture and is capable of finding comets in single images in near real time, rather than requiring multiple epochs as with traditional methods. The system achieves state-of-the-art performance with 99% recall, 0.01% false positive rate, and 1-2 pixel root mean square error in the predicted position. We report the initial results of the Tails efficiency evaluation in a production setting on the data of the ZTF Twilight survey, including the first AI-assisted discovery of a comet (C/2020 T2) and the recovery of a comet (P/2016 J3 = P/2021 A3).
We present DeepStreaks, a convolutional-neural-network, deep-learning system designed to efficiently identify streaking fast-moving near-Earth objects that are detected in the data of the Zwicky Transient Facility (ZTF), a wide-field, time-domain sur
Efficient automated detection of flux-transient, reoccurring flux-variable, and moving objects is increasingly important for large-scale astronomical surveys. We present braai, a convolutional-neural-network, deep-learning real/bogus classifier desig
The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in th
We present a novel algorithm for scheduling the observations of time-domain imaging surveys. Our Integer Linear Programming approach optimizes an observing plan for an entire night by assigning targets to temporal blocks, enabling strict control of t
The Zwicky Transient Facility (ZTF) Observing System (OS) is the data collector for the ZTF project to study astrophysical phenomena in the time domain. ZTF OS is based upon the 48-inch aperture Schmidt-type design Samuel Oschin Telescope at the Palo