ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Small Planets Transiting HD 3167

85   0   0.0 ( 0 )
 نشر من قبل Andrew Vanderburg
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R_e and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R_e and orbits its host star every 29.85 days. At a distance of just 45.8 +/- 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets masses. The outer planet is large enough that it likely has a thick gaseous envelope which could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope.

قيم البحث

اقرأ أيضاً

The masses, atmospheric makeups, spin-orbit alignments, and system architectures of extrasolar planets can be best studied when the planets orbit bright stars. We report the discovery of three bodies orbiting HD 106315, a bright (V = 8.97 mag) F5 dwa rf targeted by our K2 survey for transiting exoplanets. Two small, transiting planets have radii of 2.23 (+0.30/-0.25) R_Earth and 3.95 (+0.42/-0.39) R_Earth and orbital periods of 9.55 d and 21.06 d, respectively. A radial velocity (RV) trend of 0.3 +/- 0.1 m/s/d indicates the likely presence of a third body orbiting HD 106315 with period >160 d and mass >45 M_Earth. Transits of this object would have depths of >0.1% and are definitively ruled out. Though the star has v sin i = 13.2 km/s, it exhibits short-timescale RV variability of just 6.4 m/s, and so is a good target for RV measurements of the mass and density of the inner two planets and the outer objects orbit and mass. Furthermore, the combination of RV noise and moderate v sin i makes HD 106315 a valuable laboratory for studying the spin-orbit alignment of small planets through the Rossiter-McLaughlin effect. Space-based atmospheric characterization of the two transiting planets via transit and eclipse spectroscopy should also be feasible. This discovery demonstrates again the power of K2 to find compelling exoplanets worthy of future study.
We present an atmospheric characterization study of two medium sized planets bracketing the radius of Neptune: HD 106315 c (R$_{rm{P}}$=4.98 $pm$ 0.23 R$_{oplus}$) and HD 3167 c (R$_{rm{P}}$=2.740$_{-0.100}^{+0.106}$ R$_{oplus}$). We analyse spatiall y scanned spectroscopic observations obtained with the G141 grism (1.125 - 1.650 $mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope. We use the publicly available Iraclis pipeline and TauREx3 atmospheric retrieval code and we detect water vapor in the atmosphere of both planets with an abundance of $log_{10}[mathrm{H_2O}]=-2.1^{+0.7}_{-1.3}$ ($sim$5.68$sigma$) and $log_{10}[mathrm{H_2O}]=-4.1^{+0.9}_{-0.9}$ ($sim$3.17$sigma$) for HD 106315 c and HD 3167 c, respectively. The transmission spectrum of HD 106315 c shows also a possible evidence of ammonia absorption ($log_{10}[mathrm {NH_3}]=-4.3^{+0.7}_{-2.0}$, $sim$1.97$sigma$ -even if it is not significant-), whilst carbon dioxide absorption features may be present in the atmosphere of HD 3167 c in the $sim$1.1-1.6~$mu$m wavelength range ($log_{10}[mathrm{CO_{2}}]= -2.4^{+0.7}_{-1.0}$, $sim$3.28$sigma$). However the CO$_2$ detection appears significant, it must be considered carefully and put into perspective. Indeed, CO$_2$ presence is not explained by 1D equilibrium chemistry models, and it could be due to possible systematics. The additional contribution of clouds, CO and CH$_4$ are discussed. HD 106315 c and HD 3167 c will be interesting targets for upcoming telescopes such as the James Webb Space Telescope (JWST) and the Atmospheric Remote-Sensing Infrared Exoplanet Large-Survey (Ariel).
HD 3167 is a bright (V = 8.9), nearby K0 star observed by the NASA K2 mission (EPIC 220383386), hosting two small, short-period transiting planets. Here we present the results of a multi-site, multi-instrument radial velocity campaign to characterize the HD 3167 system. The masses of the transiting planets are 5.02+/-0.38 MEarth for HD 3167 b, a hot super-Earth with a likely rocky composition (rho_b = 5.60+2.15-1.43 g/cm^3), and 9.80+1.30-1.24 MEarth for HD 3167 c, a warm sub-Neptune with a likely substantial volatile complement (rho_c = 1.97+0.94-0.59 g/cm^3). We explore the possibility of atmospheric composition analysis and determine that planet c is amenable to transmission spectroscopy measurements, and planet b is a potential thermal emission target. We detect a third, non-transiting planet, HD 3167 d, with a period of 8.509+/-0.045 d (between planets b and c) and a minimum mass of 6.90+/-0.71 MEarth. We are able to constrain the mutual inclination of planet d with planets b and c: we rule out mutual inclinations below 1.3 degrees as we do not observe transits of planet d. From 1.3-40 degrees, there are viewing geometries invoking special nodal configurations which result in planet d not transiting some fraction of the time. From 40-60 degrees, Kozai-Lidov oscillations increase the systems instability, but it can remain stable for up to 100Myr. Above 60 degrees, the system is unstable. HD 3167 promises to be a fruitful system for further study and a preview of the many exciting systems expected from the upcoming NASA TESS mission.
We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of $7.9757 pm 0.0011$, $17.30681^{+0.00034}_{-0.00036}$, and $25.5715^{+0.0038}_{-0.0040}$ days, and radii of $1.05 pm 0.16$, $3.14 pm 0.36$, and $1.55^{+0.24}_{-0.21}$ $R_oplus$, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.
We report on the discovery and validation of a two-planet system around a bright (V = 8.85 mag) early G dwarf (1.43 $R_{odot}$, 1.15 $M_{odot}$, TOI 2319) using data from NASAs Transiting Exoplanet Survey Satellite (TESS). Three transit events from t wo planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of Pb and radius of $3.41 _{ - 0.12 } ^ { + 0.14 }$ $R_{oplus}$ for the inner planet, and a period in the range 19.26-35 days and a radius of $5.83 _{ - 0.14 } ^ { + 0.14 }$ $R_{oplus}$ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $11.56 _{ - 6.14 } ^ { + 6.58 }$ $M_{oplus}$, and allow us to place an upper limit of $27.5$ $M_{oplus}$ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterisation and comparative planetology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا