ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by

150   0   0.0 ( 0 )
 نشر من قبل Dmitry Duev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agencys Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet - satellite systems. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. We achieved, on average, mHz precision (30 {mu}m/s at a 10 seconds integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to ~50 m.



قيم البحث

اقرأ أيضاً

Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Eart h. This technique is usually employed by the deep space tracking and communication facilities (e.g., NASAs Deep Space Network (DSN), ESAs Estrack). Aims. We want to characterize the capabilities of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique for radio occultation experiments, using radio telescopes equipped with Very Long Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test with ESAs Venus Express (VEX), to evaluate the performance of the PRIDE technique for this particular application. We explain in detail the data processing pipeline of radio occultation experiments with PRIDE, based on the collection of so-called open-loop Doppler data with VLBI stations, and perform an error propagation analysis of the technique. Results. With the VEX test case and the corresponding error analysis, we have demonstrated that the PRIDE setup and processing pipeline is suited for radio occultation experiments of planetary bodies. The noise budget of the open-loop Doppler data collected with PRIDE indicated that the uncertainties in the derived density and temperature profiles remain within the range of uncertainties reported in previous Venus studies. Open-loop Doppler data can probe deeper layers of thick atmospheres, such as that of Venus, when compared to closed-loop Doppler data. Furthermore, PRIDE through the VLBI networks around the world, provides a wide coverage and range of large antenna dishes, that can be used for this type of experiments.
The ESAs Mars Express solar corona experiments were performed at two solar conjunctions in the years 2015 and 2017 by a number of radio telescopes in the European VLBI Network. This paper presents the methods to measure the frequency and phase fluctu ations of the spacecraft radio signal, and the applications to study the characteristics of the plasma turbulence effects on the signal at a single station and at multiple stations via cross-correlation. The power spectra of the frequency fluctuations observed between 4.9 and 76.3 $rm R_{s}$ have a power-law shape close to a Kolmogorov spectrum over the frequency interval $ u_{lo}< u < u_{up}$, where the nominal value of $ u_{lo}$ is set to 3 mHz and $ u_{up}$ is in the range of 0.03 $sim$ 0.15 Hz. The RMS of the frequency fluctuations is presented as a function of the heliocentric distance. Furthermore, we analyse the variations of the electron column density fluctuations at solar offsets 4.9 $rm{R_{s}}$ and 9.9 $rm{R_{s}}$ and the cross-correlation products between the VLBI stations. The power density of the differential fluctuations between different stations decreases at $ u < 0.01$ Hz. Finally, the fast flow speeds of solar wind $>700$ $rm{km~s^{-1}}$ are derived from the cross-correlation of frequency fluctuations at $ u < 0.01$ Hz. The fast flow speeds of solar wind correspond to the high heliolatitude of the coronal region that the radio rays passed. The VLBI observations and analysis methods can be used to study the electron column density fluctuations and the turbulence at multiple spatial points in the inner solar wind by providing multiple lines of sight between the Earth and the spacecraft.
We introduce an instrument for a wide spectrum of experiments on gravities other than our planets. It is based on a large Atwood machine where one of the loads is a bucket equipped with a single board computer and different sensors. The computer is a ble to detect the falling (or rising) and then the stabilization of the effective gravity and to trigger actuators depending on the experiment. Gravities within the range 0.4 g to 1.2 g are easily achieved with acceleration noise of the order of 0.01 g. Under Martian gravity we are able to perform experiments of approximately 1.5 seconds duration. The system includes features such as WiFi and a web interface with tools for the setup, monitor and the data analysis of the experiment. We briefly show a case study in testing the performance of a model Mars rover wheel in low gravities.
We introduce the Fast Holographic Deconvolution method for analyzing interferometric radio data. Our new method is an extension of A-projection/software-holography/forward modeling analysis techniques and shares their precision deconvolution and wide field polarimetry, while being significantly faster than current implementations that use full direction-dependent antenna gains. Using data from the MWA 32 antenna prototype, we demonstrate the effectiveness and precision of our new algorithm. Fast Holographic Deconvolution may be particularly important for upcoming 21 cm cosmology observations of the Epoch of Reionization and Dark Energy where foreground subtraction is intimately related to the precision of the data reduction.
The Mars Express (MEX) mission has been successfully operated around Mars since 2004. Among many results, MEX has provided some of the most accurate astrometric data of the two Mars moons, Phobos and Deimos. In this work we present new ephemerides of Mars moons benefitting from all previously published astrometric data to the most recent MEX SRC data. All in all, observations from 1877 until 2018 and including spacecraft measurements from Mariner 9 to MEX were included. Assuming a homogeneous interior, we fitted Phobos forced libration amplitude simultaneously with the Martian tidal k2/Q ratio and the initial state of the moons. Our solution of the physical libration 1.09 +/- 0.01 degrees deviates notably from the homogeneous solution. But considering the very low error bar, this may essentially suggest the necessity to consider higher order harmonics, with an improved rotation model, in the future. While most data could be successfully fitted, we found a disagreement between the Mars Reconnaissance Orbiter and the Mars Express astrometric data at the kilometer level probably associated with a biased phase correction. The present solution precision is expected at the level of a few hundreds of meters for Phobos and several hundreds of meters for Deimos for the coming years. The real accuracy of our new ephemerides will have to be confirmed by confrontation with independent observational means.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا