ترغب بنشر مسار تعليمي؟ اضغط هنا

Most prior work on task-oriented dialogue systems are restricted to limited coverage of domain APIs. However, users oftentimes have requests that are out of the scope of these APIs. This work focuses on responding to these beyond-API-coverage user tu rns by incorporating external, unstructured knowledge sources. Our approach works in a pipelined manner with knowledge-seeking turn detection, knowledge selection, and response generation in sequence. We introduce novel data augmentation methods for the first two steps and demonstrate that the use of information extracted from dialogue context improves the knowledge selection and end-to-end performances. Through experiments, we achieve state-of-the-art performance for both automatic and human evaluation metrics on the DSTC9 Track 1 benchmark dataset, validating the effectiveness of our contributions.
While most network embedding techniques model the proximity between nodes in a network, recently there has been significant interest in structural embeddings that are based on node equivalences, a notion rooted in sociology: equivalences or positions are collections of nodes that have similar roles--i.e., similar functions, ties or interactions with nodes in other positions--irrespective of their distance or reachability in the network. Unlike the proximity-based methods that are rigorously evaluated in the literature, the evaluation of structural embeddings is less mature. It relies on small synthetic or real networks with labels that are not perfectly defined, and its connection to sociological equivalences has hitherto been vague and tenuous. With new node embedding methods being developed at a breakneck pace, proper evaluation and systematic characterization of existing approaches will be essential to progress. To fill in this gap, we set out to understand what types of equivalences structural embeddings capture. We are the first to contribute rigorous intrinsic and extrinsic evaluation methodology for structural embeddings, along with carefully-designed, diverse datasets of varying sizes. We observe a number of different evaluation variables that can lead to different results (e.g., choice of similarity measure, classifier, label definitions). We find that degree distributions within nodes local neighborhoods can lead to simple yet effective baselines in their own right and guide the future development of structural embedding. We hope that our findings can influence the design of further node embedding methods and also pave the way for more comprehensive and fair evaluation of structural embedding methods.
222 - Di Jin , Zhizhi Yu , Pengfei Jiao 2021
Community detection, a fundamental task for network analysis, aims to partition a network into multiple sub-structures to help reveal their latent functions. Community detection has been extensively studied in and broadly applied to many real-world n etwork problems. Classical approaches to community detection typically utilize probabilistic graphical models and adopt a variety of prior knowledge to infer community structures. As the problems that network methods try to solve and the network data to be analyzed become increasingly more sophisticated, new approaches have also been proposed and developed, particularly those that utilize deep learning and convert networked data into low dimensional representation. Despite all the recent advancement, there is still a lack of insightful understanding of the theoretical and methodological underpinning of community detection, which will be critically important for future development of the area of network analysis. In this paper, we develop and present a unified architecture of network community-finding methods to characterize the state-of-the-art of the field of community detection. Specifically, we provide a comprehensive review of the existing community detection methods and introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning. We then discuss in detail the main idea behind each method in the two categories. Furthermore, to promote future development of community detection, we release several benchmark datasets from several problem domains and highlight their applications to various network analysis tasks. We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
82 - Xin Shu , Sameera Sansre , Di Jin 2020
Leukocyte differential test is a widely performed clinical procedure for screening infectious diseases. Existing hematology analyzers require labor-intensive work and a panel of expensive reagents. Here we report an artificial-intelligence enabled re agent-free imaging hematology analyzer (AIRFIHA) modality that can accurately classify subpopulations of leukocytes with minimal sample preparation. AIRFIHA is realized through training a two-step residual neural network using label-free images of separated leukocytes acquired from a custom-built quantitative phase microscope. We validated the performance of AIRFIHA in randomly selected test set and cross-validated it across all blood donors. AIRFIHA outperforms current methods in classification accuracy, especially in B and T lymphocytes, while preserving the natural state of cells. It also shows a promising potential in differentiating CD4 and CD8 cells. Owing to its easy operation, low cost, and strong discerning capability of complex leukocyte subpopulations, we envision AIRFIHA is clinically translatable and can also be deployed in resource-limited settings, e.g., during pandemic situations for the rapid screening of infectious diseases.
134 - Di Jin , Zhijing Jin , Zhiting Hu 2020
Text style transfer (TST) is an important task in natural language generation (NLG), which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural la nguage processing (NLP), and recently has re-gained significant attention thanks to the promising performance brought by deep neural models. In this paper, we present a systematic survey of the research on neural text style transfer, spanning over 100 representative articles since the first neural text style transfer work in 2017. We discuss the task formulation, existing datasets and subtasks, evaluation, as well as the rich methodologies in the presence of parallel and non-parallel data. We also provide discussions on a variety of important topics regarding the future development of TST. Our curated paper list is at https://github.com/zhijing-jin/Text_Style_Transfer_Survey
Graph convolutional networks (GCNs), aiming to integrate high-order neighborhood information through stacked graph convolution layers, have demonstrated remarkable power in many network analysis tasks. However, topological limitations, including over -smoothing and local topology homophily, limit its capability to represent networks. Existing studies only perform feature convolution on network topology, which inevitably introduces unbalance between topology and features. Considering that in real world, the information network consists of not only the node-level citation information but also the local text-sequence information. We propose BiTe-GCN, a novel GCN architecture with bidirectional convolution of both topology and features on text-rich networks to solve these limitations. We first transform the original text-rich network into an augmented bi-typed heterogeneous network, capturing both the global node-level information and the local text-sequence information from texts. We then introduce discriminative convolution mechanisms to performs convolutions of both topology and features simultaneously. Extensive experiments on text-rich networks demonstrate that our new architecture outperforms state-of-the-art by a breakout improvement. Moreover, this architecture can also be applied to several e-commerce searching scenes such as JD searching. The experiments on the JD dataset validate the superiority of the proposed architecture over the related methods.
Open domain question answering (OpenQA) tasks have been recently attracting more and more attention from the natural language processing (NLP) community. In this work, we present the first free-form multiple-choice OpenQA dataset for solving medical problems, MedQA, collected from the professional medical board exams. It covers three languages: English, simplified Chinese, and traditional Chinese, and contains 12,723, 34,251, and 14,123 questions for the three languages, respectively. We implement both rule-based and popular neural methods by sequentially combining a document retriever and a machine comprehension model. Through experiments, we find that even the current best method can only achieve 36.7%, 42.0%, and 70.1% of test accuracy on the English, traditional Chinese, and simplified Chinese questions, respectively. We expect MedQA to present great challenges to existing OpenQA systems and hope that it can serve as a platform to promote much stronger OpenQA models from the NLP community in the future.
190 - Xiaoyu Xing , Zhijing Jin , Di Jin 2020
Aspect-based sentiment analysis (ABSA) aims to predict the sentiment towards a specific aspect in the text. However, existing ABSA test sets cannot be used to probe whether a model can distinguish the sentiment of the target aspect from the non-targe t aspects. To solve this problem, we develop a simple but effective approach to enrich ABSA test sets. Specifically, we generate new examples to disentangle the confounding sentiments of the non-target aspects from the target aspects sentiment. Based on the SemEval 2014 dataset, we construct the Aspect Robustness Test Set (ARTS) as a comprehensive probe of the aspect robustness of ABSA models. Over 92% data of ARTS show high fluency and desired sentiment on all aspects by human evaluation. Using ARTS, we analyze the robustness of nine ABSA models, and observe, surprisingly, that their accuracy drops by up to 69.73%. We explore several ways to improve aspect robustness, and find that adversarial training can improve models performance on ARTS by up to 32.85%. Our code and new test set are available at https://github.com/zhijing-jin/ARTS_TestSet
Generating accurate descriptions for online fashion items is important not only for enhancing customers shopping experiences, but also for the increase of online sales. Besides the need of correctly presenting the attributes of items, the expressions in an enchanting style could better attract customer interests. The goal of this work is to develop a novel learning framework for accurate and expressive fashion captioning. Different from popular work on image captioning, it is hard to identify and describe the rich attributes of fashion items. We seed the description of an item by first identifying its attributes, and introduce attribute-level semantic (ALS) reward and sentence-level semantic (SLS) reward as metrics to improve the quality of text descriptions. We further integrate the training of our model with maximum likelihood estimation (MLE), attribute embedding, and Reinforcement Learning (RL). To facilitate the learning, we build a new FAshion CAptioning Dataset (FACAD), which contains 993K images and 130K corresponding enchanting and diverse descriptions. Experiments on FACAD demonstrate the effectiveness of our model.
56 - Di Jin , Zhizhi Yu , Dongxiao He 2020
Heterogeneous information network (HIN) embedding, aiming to map the structure and semantic information in a HIN to distributed representations, has drawn considerable research attention. Graph neural networks for HIN embeddings typically adopt a hie rarchical attention (including node-level and meta-path-level attentions) to capture the information from meta-path-based neighbors. However, this complicated attention structure often cannot achieve the function of selecting meta-paths due to severe overfitting. Moreover, when propagating information, these methods do not distinguish direct (one-hop) meta-paths from indirect (multi-hop) ones. But from the perspective of network science, direct relationships are often believed to be more essential, which can only be used to model direct information propagation. To address these limitations, we propose a novel neural network method via implicitly utilizing attention and meta-paths, which can relieve the severe overfitting brought by the current over-parameterized attention mechanisms on HIN. We first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each layer, along with stacking the information propagation of direct linked meta-paths layer-by-layer, realizing the function of attentions for selecting meta-paths in an indirect way. We then give an effective relaxation and improvement via introducing a new propagation operation which can be separated from aggregation. That is, we first model the whole propagation process with well-defined probabilistic diffusion dynamics, and then introduce a random graph-based constraint which allows it to reduce noise with the increase of layers. Extensive experiments demonstrate the superiority of the new approach over state-of-the-art methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا