ترغب بنشر مسار تعليمي؟ اضغط هنا

Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards

140   0   0.0 ( 0 )
 نشر من قبل Xuewen Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating accurate descriptions for online fashion items is important not only for enhancing customers shopping experiences, but also for the increase of online sales. Besides the need of correctly presenting the attributes of items, the expressions in an enchanting style could better attract customer interests. The goal of this work is to develop a novel learning framework for accurate and expressive fashion captioning. Different from popular work on image captioning, it is hard to identify and describe the rich attributes of fashion items. We seed the description of an item by first identifying its attributes, and introduce attribute-level semantic (ALS) reward and sentence-level semantic (SLS) reward as metrics to improve the quality of text descriptions. We further integrate the training of our model with maximum likelihood estimation (MLE), attribute embedding, and Reinforcement Learning (RL). To facilitate the learning, we build a new FAshion CAptioning Dataset (FACAD), which contains 993K images and 130K corresponding enchanting and diverse descriptions. Experiments on FACAD demonstrate the effectiveness of our model.



قيم البحث

اقرأ أيضاً

Descriptions are often provided along with recommendations to help users discovery. Recommending automatically generated music playlists (e.g. personalised playlists) introduces the problem of generating descriptions. In this paper, we propose a meth od for generating music playlist descriptions, which is called as music captioning. In the proposed method, audio content analysis and natural language processing are adopted to utilise the information of each track.
Text-based image captioning (TextCap) which aims to read and reason images with texts is crucial for a machine to understand a detailed and complex scene environment, considering that texts are omnipresent in daily life. This task, however, is very c hallenging because an image often contains complex texts and visual information that is hard to be described comprehensively. Existing methods attempt to extend the traditional image captioning methods to solve this task, which focus on describing the overall scene of images by one global caption. This is infeasible because the complex text and visual information cannot be described well within one caption. To resolve this difficulty, we seek to generate multiple captions that accurately describe different parts of an image in detail. To achieve this purpose, there are three key challenges: 1) it is hard to decide which parts of the texts of images to copy or paraphrase; 2) it is non-trivial to capture the complex relationship between diverse texts in an image; 3) how to generate multiple captions with diverse content is still an open problem. To conquer these, we propose a novel Anchor-Captioner method. Specifically, we first find the important tokens which are supposed to be paid more attention to and consider them as anchors. Then, for each chosen anchor, we group its relevant texts to construct the corresponding anchor-centred graph (ACG). Last, based on different ACGs, we conduct multi-view caption generation to improve the content diversity of generated captions. Experimental results show that our method not only achieves SOTA performance but also generates diverse captions to describe images.
In this paper, we propose Text2Scene, a model that generates various forms of compositional scene representations from natural language descriptions. Unlike recent works, our method does NOT use Generative Adversarial Networks (GANs). Text2Scene inst ead learns to sequentially generate objects and their attributes (location, size, appearance, etc) at every time step by attending to different parts of the input text and the current status of the generated scene. We show that under minor modifications, the proposed framework can handle the generation of different forms of scene representations, including cartoon-like scenes, object layouts corresponding to real images, and synthetic images. Our method is not only competitive when compared with state-of-the-art GAN-based methods using automatic metrics and superior based on human judgments but also has the advantage of producing interpretable results.
To bridge the gap between humans and machines in image understanding and describing, we need further insight into how people describe a perceived scene. In this paper, we study the agreement between bottom-up saliency-based visual attention and objec t referrals in scene description constructs. We investigate the properties of human-written descriptions and machine-generated ones. We then propose a saliency-boosted image captioning model in order to investigate benefits from low-level cues in language models. We learn that (1) humans mention more salient objects earlier than less salient ones in their descriptions, (2) the better a captioning model performs, the better attention agreement it has with human descriptions, (3) the proposed saliency-boosted model, compared to its baseline form, does not improve significantly on the MS COCO database, indicating explicit bottom-up boosting does not help when the task is well learnt and tuned on a data, (4) a better generalization is, however, observed for the saliency-boosted model on unseen data.
Generating videos from text is a challenging task due to its high computational requirements for training and infinite possible answers for evaluation. Existing works typically experiment on simple or small datasets, where the generalization ability is quite limited. In this work, we propose GODIVA, an open-domain text-to-video pretrained model that can generate videos from text in an auto-regressive manner using a three-dimensional sparse attention mechanism. We pretrain our model on Howto100M, a large-scale text-video dataset that contains more than 136 million text-video pairs. Experiments show that GODIVA not only can be fine-tuned on downstream video generation tasks, but also has a good zero-shot capability on unseen texts. We also propose a new metric called Relative Matching (RM) to automatically evaluate the video generation quality. Several challenges are listed and discussed as future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا