ترغب بنشر مسار تعليمي؟ اضغط هنا

What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams

86   0   0.0 ( 0 )
 نشر من قبل Di Jin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Open domain question answering (OpenQA) tasks have been recently attracting more and more attention from the natural language processing (NLP) community. In this work, we present the first free-form multiple-choice OpenQA dataset for solving medical problems, MedQA, collected from the professional medical board exams. It covers three languages: English, simplified Chinese, and traditional Chinese, and contains 12,723, 34,251, and 14,123 questions for the three languages, respectively. We implement both rule-based and popular neural methods by sequentially combining a document retriever and a machine comprehension model. Through experiments, we find that even the current best method can only achieve 36.7%, 42.0%, and 70.1% of test accuracy on the English, traditional Chinese, and simplified Chinese questions, respectively. We expect MedQA to present great challenges to existing OpenQA systems and hope that it can serve as a platform to promote much stronger OpenQA models from the NLP community in the future.



قيم البحث

اقرأ أيضاً

In the last few years, open-domain question answering (ODQA) has advanced rapidly due to the development of deep learning techniques and the availability of large-scale QA datasets. However, the current datasets are essentially designed for synchroni c document collections (e.g., Wikipedia). Temporal news collections such as long-term news archives spanning several decades, are rarely used in training the models despite they are quite valuable for our society. In order to foster the research in the field of ODQA on such historical collections, we present ArchivalQA, a large question answering dataset consisting of 1,067,056 question-answer pairs which is designed for temporal news QA. In addition, we create four subparts of our dataset based on the question difficulty levels and the containment of temporal expressions, which we believe could be useful for training or testing ODQA systems characterized by different strengths and abilities. The novel QA dataset-constructing framework that we introduce can be also applied to create datasets over other types of collections.
To date, most of recent work under the retrieval-reader framework for open-domain QA focuses on either extractive or generative reader exclusively. In this paper, we study a hybrid approach for leveraging the strengths of both models. We apply novel techniques to enhance both extractive and generative readers built upon recent pretrained neural language models, and find that proper training methods can provide large improvement over previous state-of-the-art models. We demonstrate that a simple hybrid approach by combining answers from both readers can efficiently take advantages of extractive and generative answer inference strategies and outperforms single models as well as homogeneous ensembles. Our approach outperforms previous state-of-the-art models by 3.3 and 2.7 points in exact match on NaturalQuestions and TriviaQA respectively.
Recent work on Open Domain Question Answering has shown that there is a large discrepancy in model performance between novel test questions and those that largely overlap with training questions. However, it is as of yet unclear which aspects of nove l questions that make them challenging. Drawing upon studies on systematic generalization, we introduce and annotate questions according to three categories that measure different levels and kinds of generalization: training set overlap, compositional generalization (comp-gen), and novel entity generalization (novel-entity). When evaluating six popular parametric and non-parametric models, we find that for the established Natural Questions and TriviaQA datasets, even the strongest model performance for comp-gen/novel-entity is 13.1/5.4% and 9.6/1.5% lower compared to that for the full test set -- indicating the challenge posed by these types of questions. Furthermore, we show that whilst non-parametric models can handle questions containing novel entities, they struggle with those requiring compositional generalization. Through thorough analysis we find that key question difficulty factors are: cascading errors from the retrieval component, frequency of question pattern, and frequency of the entity.
Open-domain Question Answering (ODQA) has achieved significant results in terms of supervised learning manner. However, data annotation cannot also be irresistible for its huge demand in an open domain. Though unsupervised QA or unsupervised Machine Reading Comprehension (MRC) has been tried more or less, unsupervised ODQA has not been touched according to our best knowledge. This paper thus pioneers the work of unsupervised ODQA by formally introducing the task and proposing a series of key data construction methods. Our exploration in this work inspiringly shows unsupervised ODQA can reach up to 86% performance of supervised ones.
Open-domain question answering (QA) aims to find the answer to a question from a large collection of documents.Though many models for single-document machine comprehension have achieved strong performance, there is still much room for improving open- domain QA systems since document retrieval and answer reranking are still unsatisfactory. Golden documents that contain the correct answers may not be correctly scored by the retrieval component, and the correct answers that have been extracted may be wrongly ranked after other candidate answers by the reranking component. One of the reasons is derived from the independent principle in which each candidate document (or answer) is scored independently without considering its relationship to other documents (or answers). In this work, we propose a knowledge-aided open-domain QA (KAQA) method which targets at improving relevant document retrieval and candidate answer reranking by considering the relationship between a question and the documents (termed as question-document graph), and the relationship between candidate documents (termed as document-document graph). The graphs are built using knowledge triples from external knowledge resources. During document retrieval, a candidate document is scored by considering its relationship to the question and other documents. During answer reranking, a candidate answer is reranked using not only its own context but also the clues from other documents. The experimental results show that our proposed method improves document retrieval and answer reranking, and thereby enhances the overall performance of open-domain question answering.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا