ترغب بنشر مسار تعليمي؟ اضغط هنا

287 - Daniel Pomerleano 2021
The main result of the present paper concerns finiteness properties of Floer theoretic invariants on affine log Calabi-Yau varieties $X$. Namely, we show that: (a) the degree zero symplectic cohomology $SH^0(X)$ is finitely generated and is a filte red deformation of a certain algebra defined combinatorially in terms of a compactifying divisor $mathbf{D}.$ (b) For any Lagrangian branes $L_0, L_1$, the wrapped Floer groups $WF^*(L_0,L_1)$ are finitely generated modules over $SH^0(X).$ We then describe applications of this result to mirror symmetry, the first of which is an ``automatic generation criterion for the wrapped Fukaya category $mathcal{W}(X)$. We also show that, in the case where $X$ is maximally degenerate and admits a ``homological section, $mathcal{W}(X)$ gives a categorical crepant resolution of the potentially singular variety $operatorname{Spec}(SH^0(X))$. This provides a link between the intrinsic mirror symmetry program of Gross and Siebert and the categorical birational geometry program initiated by Bondal-Orlov and Kuznetsov.
We construct a multiplicative spectral sequence converging to the symplectic cohomology ring of any affine variety $X$, with first page built out of topological invariants associated to strata of any fixed normal crossings compactification $(M,mathbf {D})$ of $X$. We exhibit a broad class of pairs $(M,mathbf{D})$ (characterized by the absence of relative holomorphic spheres or vanishing of certain relative GW invariants) for which the spectral sequence degenerates, and a broad subclass of pairs (similarly characterized) for which the ring structure on symplectic cohomology can also be described topologically. Sample applications include: (a) a complete topological description of the symplectic cohomology ring of the complement, in any projective $M$, of the union of sufficiently many generic ample divisors whose homology classes span a rank one subspace, (b) complete additive and partial multiplicative computations of degree zero symplectic cohomology rings of many log Calabi-Yau varieties, and (c) a proof in many cases that symplectic cohomology is finitely generated as a ring. A key technical ingredient in our results is a logarithmic version of the PSS morphism, introduced in our earlier work [GP1].
Let $M$ be a smooth projective variety and $mathbf{D}$ an ample normal crossings divisor. From topological data associated to the pair $(M, mathbf{D})$, we construct, under assumptions on Gromov-Witten invariants, a series of distinguished classes in symplectic cohomology of the complement $X = M backslash mathbf{D}$. Under further topological assumptions on the pair, these classes can be organized into a Log(arithmic) PSS morphism, from a vector space which we term the logarithmic cohomology of $(M, mathbf{D})$ to symplectic cohomology. Turning to applications, we show that these methods and some knowledge of Gromov-Witten invariants can be used to produce dilations and quasi-dilations (in the sense of Seidel-Solomon [SS]) in examples such as conic bundles. In turn, the existence of such elements imposes strong restrictions on exact Lagrangian embeddings, especially in dimension 3. For instance, we prove that any exact Lagrangian in a complex 3-dimensional conic bundle over $(mathbb{C}^*)^2$ must be diffeomorphic to $T^3$ or a connect sum $#^n S^1 times S^2$.
We construct Lagrangian sections of a Lagrangian torus fibration on a 3-dimensional conic bundle, which are SYZ dual to holomorphic line bundles over the mirror toric Calabi-Yau 3-fold. We then demonstrate a ring isomorphism between the wrapped Floer cohomology of the zero-section and the regular functions on the mirror toric Calabi-Yau 3-fold. Furthermore, we show that in the case when the Calabi-Yau 3-fold is affine space, the zero section generates the wrapped Fukaya category of the mirror conic bundle. This allows us to complete the proof of one direction of homological mirror symmetry for toric Calabi-Yau orbifold quotients of the form $mathbb{C}^3/Check{G}$. We finish by describing some elementary applications of our computations to symplectic topology.
We develop a version of Hodge theory for a large class of smooth cohomologically proper quotient stacks $X/G$ analogous to Hodge theory for smooth projective schemes. We show that the noncommutative Hodge-de Rham sequence for the category of equivari ant coherent sheaves degenerates. This spectral sequence converges to the periodic cyclic homology, which we canonically identify with the topological equivariant $K$-theory of $X$ with respect to a maximal compact subgroup $M subset G$. The result is a natural pure Hodge structure of weight $n$ on $K^n_M(X^{an})$. We also treat categories of matrix factorizations for equivariant Landau-Ginzburg models.
206 - Daniel Pomerleano 2012
A sequel to arXiv:1111.1460, this paper elaborates on some of the themes in the above paper. Connections to Symplectic Field Theory (SFT) and mirror symmetry are explored.
154 - Daniel Pomerleano 2011
Given a simply connected manifold M such that its cochain algebra, C^star(M), is a pure Sullivan dga, this paper considers curved deformations of the algebra C_star({Omega}M) and consider when the category of curved modules over these algebras become s fully dualizable. For simple manifolds, like products of spheres, we are able to give an explicit criterion for when the resulting category of curved modules is smooth, proper and CY and thus gives rise to a TQFT. We give Floer theoretic interpretations of these theories for projective spaces and their products, which involve defining a Fukaya category which counts holomorphic disks with prescribed tangencies to a divisor.
We study matrix factorization and curved module categories for Landau-Ginzburg models (X,W) with X a smooth variety, extending parts of the work of Dyckerhoff. Following Positselski, we equip these categories with model category structures. Using res ults of Rouquier and Orlov, we identify compact generators. Via Toens derived Morita theory, we identify Hochschild cohomology with derived endomorphisms of the diagonal curved module; we compute the latter and get the expected result. Finally, we show that our categories are smooth, proper when the singular locus of W is proper, and Calabi-Yau when the total space X is Calabi-Yau.
The Four Vertex Theorem, one of the earliest results in global differential geometry, says that a simple closed curve in the plane, other than a circle, must have at least four vertices, that is, at least four points where the curvature has a local m aximum or local minimum. In 1909 Syamadas Mukhopadhyaya proved this for strictly convex curves in the plane, and in 1912 Adolf Kneser proved it for all simple closed curves in the plane, not just the strictly convex ones. The Converse to the Four Vertex Theorem says that any continuous real-valued function on the circle which has at least two local maxima and two local minima is the curvature function of a simple closed curve in the plane. In 1971 Herman Gluck proved this for strictly positive preassigned curvature, and in 1997 Bjorn Dahlberg proved the full converse, without the restriction that the curvature be strictly positive. Publication was delayed by Dahlbergs untimely death in January 1998, but his paper was edited afterwards by Vilhelm Adolfsson and Peter Kumlin, and finally appeared in 2005. The work of Dahlberg completes the almost hundred-year-long thread of ideas begun by Mukhopadhyaya, and we take this opportunity to provide a self-contained exposition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا