ﻻ يوجد ملخص باللغة العربية
Given a simply connected manifold M such that its cochain algebra, C^star(M), is a pure Sullivan dga, this paper considers curved deformations of the algebra C_star({Omega}M) and consider when the category of curved modules over these algebras becomes fully dualizable. For simple manifolds, like products of spheres, we are able to give an explicit criterion for when the resulting category of curved modules is smooth, proper and CY and thus gives rise to a TQFT. We give Floer theoretic interpretations of these theories for projective spaces and their products, which involve defining a Fukaya category which counts holomorphic disks with prescribed tangencies to a divisor.
A sequel to arXiv:1111.1460, this paper elaborates on some of the themes in the above paper. Connections to Symplectic Field Theory (SFT) and mirror symmetry are explored.
We compute the Fukaya category of the symplectic blowup of a compact rational symplectic manifold at a point in the following sense: Suppose a collection of Lagrangian branes satisfy Abouzaids criterion for split-generation of a bulk-deformed Fukaya
We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2)
Suppose one has found a non-empty sub-category $mathcal{A}$ of the Fukaya category of a compact Calabi-Yau manifold $X$ which is homologically smooth in the sense of non-commutative geometry, a condition intrinsic to $mathcal{A}$. Then, we show $math
The Nadler-Zaslow correspondence famously identifies the finite-dimensional Floer homology groups between Lagrangians in cotangent bundles with the finite-dimensional Hom spaces between corresponding constructible sheaves. We generalize this correspo