ﻻ يوجد ملخص باللغة العربية
We study matrix factorization and curved module categories for Landau-Ginzburg models (X,W) with X a smooth variety, extending parts of the work of Dyckerhoff. Following Positselski, we equip these categories with model category structures. Using results of Rouquier and Orlov, we identify compact generators. Via Toens derived Morita theory, we identify Hochschild cohomology with derived endomorphisms of the diagonal curved module; we compute the latter and get the expected result. Finally, we show that our categories are smooth, proper when the singular locus of W is proper, and Calabi-Yau when the total space X is Calabi-Yau.
We study matrix factorizations of locally free coherent sheaves on a scheme. For a scheme that is projective over an affine scheme, we show that homomorphisms in the homotopy category of matrix factorizations may be computed as the hypercohomology of
We develop a theory of ``ad hoc Chern characters for twisted matrix factorizations associated to a scheme $X$, a line bundle ${mathcal L}$, and a regular global section $W in Gamma(X, {mathcal L})$. As an application, we establish the vanishing, in
We observe that there is an equivalence between the singularity category of an affine complete intersection and the homotopy category of matrix factorizations over a related scheme. This relies in part on a theorem of Orlov. Using this equivalence, w
Placing D3-branes at conical Calabi-Yau threefold singularities produces many AdS$_5$/CFT$_4$ duals. Recent progress in differential geometry has produced a technique (called K-stability) to recognize which singularities admit conical Calabi-Yau metr
We study relations between the eigenvectors of rational matrix functions on the Riemann sphere. Our main result is that for a subclass of functions that are products of two elementary blocks it is possible to represent these relations in a combinator