ترغب بنشر مسار تعليمي؟ اضغط هنا

The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct pairs. We determine, with an exception of two cases, the complexity of the Disjoint P aths problem for $H$-free graphs. If $k$ is fixed, we obtain the $k$-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every $k geq 1$. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of $k$-Disjoint Connected Subgraphs for $H$-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for $H$-free graphs as for Disjoint Paths.
We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. In particular, we prove that both problems are polynomial-time sol vable for $sP_3$-free graphs for every integer $sgeq 1$. Our results show that both problems exhibit the same behaviour on $H$-free graphs (subject to some open cases). This is in part explained by a new general algorithm we design for finding in a graph $G$ a largest induced subgraph whose blocks belong to some finite class ${cal C}$ of graphs. We also compare our results with the state-of-the-art results for the Odd Cycle Transversal problem, which is known to behave differently on $H$-free graphs.
For $kgeq 1$, a $k$-colouring $c$ of $G$ is a mapping from $V(G)$ to ${1,2,ldots,k}$ such that $c(u) eq c(v)$ for any two non-adjacent vertices $u$ and $v$. The $k$-Colouring problem is to decide if a graph $G$ has a $k$-colouring. For a family of gr aphs ${cal H}$, a graph $G$ is ${cal H}$-free if $G$ does not contain any graph from ${cal H}$ as an induced subgraph. Let $C_s$ be the $s$-vertex cycle. In previous work (MFCS 2019) we examined the effect of bounding the diameter on the complexity of $3$-Colouring for $(C_3,ldots,C_s)$-free graphs and $H$-free graphs where $H$ is some polyad. Here, we prove for certain small values of $s$ that $3$-Colouring is polynomial-time solvable for $C_s$-free graphs of diameter $2$ and $(C_4,C_s)$-free graphs of diameter $2$. In fact, our results hold for the more general problem List $3$-Colouring. We complement these results with some hardness result for diameter $4$.
Paths $P_1,ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P_i$ such that each $P_i$ connects $s_i$ and $t_i$. This is a classical graph problem that is NP-complete even for $k=2$. We study it for AT-free graphs. Unlike its subclasses of permutation graphs and cocomparability graphs, the class of AT-free graphs has no geometric intersection model. However, by a new, structural analysis of the behaviour of Induced Disjoint Paths for AT-free graphs, we prove that it can be solved in polynomial time for AT-free graphs even when $k$ is part of the input. This is in contrast to the situation for other well-known graph classes, such as planar graphs, claw-free graphs, or more recently, (theta,wheel)-free graphs, for which such a result only holds if $k$ is fixed. As a consequence of our main result, the problem of deciding if a given AT-free graph contains a fixed graph $H$ as an induced topological minor admits a polynomial-time algorithm. In addition, we show that such an algorithm is essentially optimal by proving that the problem is W[1]-hard with parameter $|V_H|$, even on a subclass of AT-free graph, namely cobipartite graphs. We also show that the problems $k$-in-a-Path and $k$-in-a-Tree are polynomial-time solvable on AT-free graphs even if $k$ is part of the input. These problems are to test if a graph has an induced path or induced tree, respectively, spanning $k$ given vertices.
A graph class is hereditary if it is closed under vertex deletion. We give examples of NP-hard, PSPACE-complete and NEXPTIME-complete problems that become constant-time solvable for every hereditary graph class that is not equal to the class of all graphs.
A bipartite graph $G=(A,B,E)$ is ${cal H}$-convex, for some family of graphs ${cal H}$, if there exists a graph $Hin {cal H}$ with $V(H)=A$ such that the set of neighbours in $A$ of each $bin B$ induces a connected subgraph of $H$. Many $mathsf{NP}$- complete problems, including problems such as Dominating Set, Feedback Vertex Set, Induced Matching and List $k$-Colouring, become polynomial-time solvable for ${mathcal H}$-convex graphs when ${mathcal H}$ is the set of paths. In this case, the class of ${mathcal H}$-convex graphs is known as the class of convex graphs. The underlying reason is that the class of convex graphs has bounded mim-width. We extend the latter result to families of ${mathcal H}$-convex graphs where (i) ${mathcal H}$ is the set of cycles, or (ii) ${mathcal H}$ is the set of trees with bounded maximum degree and a bounded number of vertices of degree at least $3$. As a consequence, we can re-prove and strengthen a large number of results on generalized convex graphs known in the literature. To complement result (ii), we show that the mim-width of ${mathcal H}$-convex graphs is unbounded if ${mathcal H}$ is the set of trees with arbitrarily large maximum degree or an arbitrarily large number of vertices of degree at least $3$. In this way we are able to determine complexity dichotomies for the aforementioned graph problems. Afterwards we perform a more refined width-parameter analysis, which shows even more clearly which width parameters are bounded for classes of ${cal H}$-convex graphs.
A homomorphism from a graph G to a graph H is a vertex mapping f from the vertex set of G to the vertex set of H such that there is an edge between vertices f(u) and f(v) of H whenever there is an edge between vertices u and v of G. The H-Colouring p roblem is to decide whether or not a graph G allows a homomorphism to a fixed graph H. We continue a study on a variant of this problem, namely the Surjective H-Colouring problem, which imposes the homomorphism to be vertex-surjective. We build upon previous results and show that this problem is NP-complete for every connected graph H that has exactly two vertices with a self-loop as long as these two vertices are not adjacent. As a result, we can classify the computational complexity of Surjective H-Colouring for every graph H on at most four vertices.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا