ترغب بنشر مسار تعليمي؟ اضغط هنا

Surjective H-Colouring: New Hardness Results

123   0   0.0 ( 0 )
 نشر من قبل Barnaby Martin
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A homomorphism from a graph G to a graph H is a vertex mapping f from the vertex set of G to the vertex set of H such that there is an edge between vertices f(u) and f(v) of H whenever there is an edge between vertices u and v of G. The H-Colouring problem is to decide whether or not a graph G allows a homomorphism to a fixed graph H. We continue a study on a variant of this problem, namely the Surjective H-Colouring problem, which imposes the homomorphism to be vertex-surjective. We build upon previous results and show that this problem is NP-complete for every connected graph H that has exactly two vertices with a self-loop as long as these two vertices are not adjacent. As a result, we can classify the computational complexity of Surjective H-Colouring for every graph H on at most four vertices.



قيم البحث

اقرأ أيضاً

A graph is called $P_t$-free if it does not contain the path on $t$ vertices as an induced subgraph. Let $H$ be a multigraph with the property that any two distinct vertices share at most one common neighbour. We show that the generating function for (list) graph homomorphisms from $G$ to $H$ can be calculated in subexponential time $2^{Oleft(sqrt{tnlog(n)}right)}$ for $n=|V(G)|$ in the class of $P_t$-free graphs $G$. As a corollary, we show that the number of 3-colourings of a $P_t$-free graph $G$ can be found in subexponential time. On the other hand, no subexponential time algorithm exists for 4-colourability of $P_t$-free graphs assuming the Exponential Time Hypothesis. Along the way, we prove that $P_t$-free graphs have pathwidth that is linear in their maximum degree.
A (proper) colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an acyc lic colouring. The corresponding decision problems are Acyclic Colouring, Star Colouring and Injective Colouring (the last problem is also known as $L(1,1)$-Labelling). A classical complexity result on Colouring is a well-known dichotomy for $H$-free graphs (a graph is $H$-free if it does not contain $H$ as an induced subgraph). In contrast, there is no systematic study into the computational complexity of Acyclic Colouring, Star Colouring and Injective Colouring despite numerous algorithmic and structural results that have appeared over the years. We perform such a study and give almost complete complexity classifications for Acyclic Colouring, Star Colouring and Injective Colouring on $H$-free graphs (for each of the problems, we have one open case). Moreover, we give full complexity classifications if the number of colours $k$ is fixed, that is, not part of the input. From our study it follows that for fixed $k$ the three problems behave in the same way, but this is no longer true if $k$ is part of the input. To obtain several of our results we prove stronger complexity results that in particular involve the girth of a graph and the class of line graphs of multigraphs.
In the classical Node-Disjoint Paths (NDP) problem, the input consists of an undirected $n$-vertex graph $G$, and a collection $mathcal{M}={(s_1,t_1),ldots,(s_k,t_k)}$ of pairs of its vertices, called source-destination, or demand, pairs. The goal is to route the largest possible number of the demand pairs via node-disjoint paths. The best current approximation for the problem is achieved by a simple greedy algorithm, whose approximation factor is $O(sqrt n)$, while the best current negative result is an $Omega(log^{1/2-delta}n)$-hardness of approximation for any constant $delta$, under standard complexity assumptions. Even seemingly simple special cases of the problem are still poorly understood: when the input graph is a grid, the best current algorithm achieves an $tilde O(n^{1/4})$-approximation, and when it is a general planar graph, the best current approximation ratio of an efficient algorithm is $tilde O(n^{9/19})$. The best currently known lower bound on the approximability of both the
We consider the complexity properties of modern puzzle games, Hexiom, Cut the Rope and Back to Bed. The complexity of games plays an important role in the type of experience they provide to players. Back to Bed is shown to be PSPACE-Hard and the firs t two are shown to be NP-Hard. These results give further insight into the structure of these games and the resulting constructions may be useful in further complexity studies.
We study a family of generalizations of Edge Dominating Set on directed graphs called Directed $(p,q)$-Edge Dominating Set. In this problem an arc $(u,v)$ is said to dominate itself, as well as all arcs which are at distance at most $q$ from $v$, or at distance at most $p$ to $u$. First, we give significantly improved FPT algorithms for the two most important cases of the problem, $(0,1)$-dEDS and $(1,1)$-dEDS (that correspond
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا