ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a discrete theory of vector bundles with connection that is natural with respect to appropriate mappings of the base space. The main objects are discrete vector bundle valued cochains. The central operators are a discrete exterior covarian t derivative and a combinatorial wedge product. We demonstrate the key properties of these operators and show that they are natural with respect to the mappings referred to above. We give a new interpretation in terms of a double averaging of anti-symmetrized cup product which serves as our discrete wedge product. We also formulate a well-behaved definition of metric compatible discrete connections. We characterize when a discrete vector bundle with connection is trivializable or has a trivial lower rank subbundle. This machinery is used to define discrete curvature as linear maps and we show that our formulation satisfies a discrete Bianchi identity.
We construct a map from $d|1$-dimensional Euclidean field theories to complexified K-theory when $d=1$ and complex analytic elliptic cohomology when $d=2$. This provides further evidence for the Stolz--Teichner program, while also identifying candida te geometric models for Chern characters within their framework. The construction arises as a higher-dimensional and parameterized generalization of Fei Hans realization of the Chern character in K-theory as dimensional reduction for $1|1$-dimensional Euclidean field theories. In the elliptic case, the main new feature is a subtle interplay between the geometry of the super moduli space of $2|1$-dimensional tori and the derived geometry of complex analytic elliptic cohomology. As a corollary, we obtain an entirely geometric proof that partition functions of $mathcal{N}=(0,1)$ supersymmetric quantum field theories are weak modular forms, following a suggestion of Stolz and Teichner.
The Stolz--Teichner program proposes a deep connection between geometric field theories and certain cohomology theories. In this paper, we extend this connection by developing a theory of geometric power operations for geometric field theories restri cted to closed bordisms. These operations satisfy relations analogous to the ones exhibited by their homotopical counterparts. We also provide computational tools to identify the geometrically defined operations with the usual power operations on complexified equivariant $K$-theory. Further, we use the geometric approach to construct power operations for complexified equivariant elliptic cohomology.
We prove that the set of concordance classes of sections of an infinity-sheaf on a manifold is representable, extending a theorem of Madsen and Weiss. This is reminiscent of an h-principle in which the role of isotopy is played by concordance. As an application, we offer an answer to the question: what does the classifying space of a Segal space classify?
Equivariant localization techniques give a rigorous interpretation of the Witten genus as an integral over the double loop space. This provides a geometric explanation for its modularity properties. It also reveals an interplay between the geometry o f double loop spaces and complex analytic elliptic cohomology. In particular, we identify a candidate target for the elliptic Bismut-Chern character.
We construct a cocycle model for complex analytic equivariant elliptic cohomology that refines Grojnowskis theory when the group is connected and Devotos when the group is finite. We then construct Mathai--Quillen type cocycles for equivariant ellipt ic Euler and Thom classes, explaining how these are related to positive energy representations of loop groups. Finally, we show that these classes give a unique equivariant refinement of Hopkins theorem of the cube construction of the ${rm MString}$-orientation of elliptic cohomology.
We construct a global geometric model for complex analytic equivariant elliptic cohomology for all compact Lie groups. Cocycles are specified by functions on the space of fields of the two-dimensional sigma model with background gauge fields and $mat hcal{N} = (0, 1)$ supersymmetry. We also consider a theory of free fermions valued in a representation whose partition function is a section of a determinant line bundle. We identify this section with a cocycle representative of the (twisted) equivariant elliptic Euler class of the representation. Finally, we show that the moduli stack of $U(1)$-gauge fields carries a multiplication compatible with the complex analytic group structure on the universal (dual) elliptic curve, with the Euler class providing a choice of coordinate. This provides a physical manifestation of the elliptic group law central to the homotopy-theoretic construction of elliptic cohomology.
We study super parallel transport around super loops in a quotient stack, and show that this geometry constructs a global version of the equivariant Chern character.
We present a cocycle model for elliptic cohomology with complex coefficients in which methods from 2-dimensional quantum field theory can be used to rigorously construct cocycles. For example, quantizing a theory of vector bundle-valued fermions yiel ds a cocycle representative of the elliptic Thom class. This constructs the complexified string orientation of elliptic cohomology, which determines a pushfoward for families of rational string manifolds. A second pushforward is constructed from quantizing a supersymmetric $sigma$-model. These two pushforwards agree, giving a precise physical interpretation for the elliptic index theorem with complex coefficients. This both refines and supplies further evidence for the long-conjectured relationship between elliptic cohomology and 2-dimensional quantum field theory. Analogous methods in supersymmetric mechanics recover path integral constructions of the Mathai--Quillen Thom form in complexified ${rm KO}$-theory and a cocycle representative of the $hat{A}$-class for a family of oriented manifolds.
We show that the category of vector fields on a geometric stack has the structure of a Lie 2-algebra. This proves a conjecture of R.~Hepworth. The construction uses a Lie groupoid that presents the geometric stack. We show that the category of vector fields on the Lie groupoid is equivalent to the category of vector fields on the stack. The category of vector fields on the Lie groupoid has a Lie 2-algebra structure built from known (ordinary) Lie brackets on multiplicative vector fields of Mackenzie and Xu and the global sections of the Lie algebroid of the Lie groupoid. After giving a precise formulation of Morita invariance of the construction, we verify that the Lie 2-algebra structure defined in this way is well-defined on the underlying stack.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا