ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetric localization, modularity and the Witten genus

169   0   0.0 ( 0 )
 نشر من قبل Daniel Berwick-Evans
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Equivariant localization techniques give a rigorous interpretation of the Witten genus as an integral over the double loop space. This provides a geometric explanation for its modularity properties. It also reveals an interplay between the geometry of double loop spaces and complex analytic elliptic cohomology. In particular, we identify a candidate target for the elliptic Bismut-Chern character.



قيم البحث

اقرأ أيضاً

Atiyahs classical work on circular symmetry and stationary phase shows how the $hat{A}$-genus is obtained by formally applying the equivariant cohomology localization formula to the loop space of a simply connected spin manifold. The same technique, applied to a suitable antiholomorphic sector in the $mathbb{C}/Lambda$-equivariant cohomology of the conformal double loop space $mathrm{Maps}(mathbb{C}/Lambda,X)$ of a rationally string manifold $X$ produces the Witten genus of $X$. This can be seen as an equivariant localization counterpart to Berwick-Evans supersymmetric localization derivation of the Witten genus.
We construct a map from $d|1$-dimensional Euclidean field theories to complexified K-theory when $d=1$ and complex analytic elliptic cohomology when $d=2$. This provides further evidence for the Stolz--Teichner program, while also identifying candida te geometric models for Chern characters within their framework. The construction arises as a higher-dimensional and parameterized generalization of Fei Hans realization of the Chern character in K-theory as dimensional reduction for $1|1$-dimensional Euclidean field theories. In the elliptic case, the main new feature is a subtle interplay between the geometry of the super moduli space of $2|1$-dimensional tori and the derived geometry of complex analytic elliptic cohomology. As a corollary, we obtain an entirely geometric proof that partition functions of $mathcal{N}=(0,1)$ supersymmetric quantum field theories are weak modular forms, following a suggestion of Stolz and Teichner.
We present a cocycle model for elliptic cohomology with complex coefficients in which methods from 2-dimensional quantum field theory can be used to rigorously construct cocycles. For example, quantizing a theory of vector bundle-valued fermions yiel ds a cocycle representative of the elliptic Thom class. This constructs the complexified string orientation of elliptic cohomology, which determines a pushfoward for families of rational string manifolds. A second pushforward is constructed from quantizing a supersymmetric $sigma$-model. These two pushforwards agree, giving a precise physical interpretation for the elliptic index theorem with complex coefficients. This both refines and supplies further evidence for the long-conjectured relationship between elliptic cohomology and 2-dimensional quantum field theory. Analogous methods in supersymmetric mechanics recover path integral constructions of the Mathai--Quillen Thom form in complexified ${rm KO}$-theory and a cocycle representative of the $hat{A}$-class for a family of oriented manifolds.
We conjecture a formula for the refined $mathrm{SU}(3)$ Vafa-Witten invariants of any smooth surface $S$ satisfying $H_1(S,mathbb{Z}) = 0$ and $p_g(S)>0$. The unrefined formula corrects a proposal by Labastida-Lozano and involves unexpected algebraic expressions in modular functions. We prove that our formula satisfies a refined $S$-duality modularity transformation. We provide evidence for our formula by calculating virtual $chi_y$-genera of moduli spaces of rank 3 stable sheaves on $S$ in examples using Mochizukis formula. Further evidence is based on the recent definition of refined $mathrm{SU}(r)$ Vafa-Witten invariants by Maulik-Thomas and subsequent calculations on nested Hilbert schemes by Thomas (rank 2) and Laarakker (rank 3).
106 - David R. Morrison 2016
We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kahler potential on the conform al manifold. We show how the Kahler potential can be assembled from classical, perturbative, and non-perturbative contributions, and explain how the non-perturbative contributions are related to the Gromov-Witten invariants of the corresponding Calabi-Yau manifold. We then explain how localization enables efficient calculation of the two-sphere partition function and, ultimately, the Gromov-Witten invariants themselves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا