ﻻ يوجد ملخص باللغة العربية
Equivariant localization techniques give a rigorous interpretation of the Witten genus as an integral over the double loop space. This provides a geometric explanation for its modularity properties. It also reveals an interplay between the geometry of double loop spaces and complex analytic elliptic cohomology. In particular, we identify a candidate target for the elliptic Bismut-Chern character.
Atiyahs classical work on circular symmetry and stationary phase shows how the $hat{A}$-genus is obtained by formally applying the equivariant cohomology localization formula to the loop space of a simply connected spin manifold. The same technique,
We construct a map from $d|1$-dimensional Euclidean field theories to complexified K-theory when $d=1$ and complex analytic elliptic cohomology when $d=2$. This provides further evidence for the Stolz--Teichner program, while also identifying candida
We present a cocycle model for elliptic cohomology with complex coefficients in which methods from 2-dimensional quantum field theory can be used to rigorously construct cocycles. For example, quantizing a theory of vector bundle-valued fermions yiel
We conjecture a formula for the refined $mathrm{SU}(3)$ Vafa-Witten invariants of any smooth surface $S$ satisfying $H_1(S,mathbb{Z}) = 0$ and $p_g(S)>0$. The unrefined formula corrects a proposal by Labastida-Lozano and involves unexpected algebraic
We give a pedagogical review of the computation of Gromov-Witten invariants via localization in 2D gauged linear sigma models. We explain the relationship between the two-sphere partition function of the theory and the Kahler potential on the conform