ﻻ يوجد ملخص باللغة العربية
We construct a global geometric model for complex analytic equivariant elliptic cohomology for all compact Lie groups. Cocycles are specified by functions on the space of fields of the two-dimensional sigma model with background gauge fields and $mathcal{N} = (0, 1)$ supersymmetry. We also consider a theory of free fermions valued in a representation whose partition function is a section of a determinant line bundle. We identify this section with a cocycle representative of the (twisted) equivariant elliptic Euler class of the representation. Finally, we show that the moduli stack of $U(1)$-gauge fields carries a multiplication compatible with the complex analytic group structure on the universal (dual) elliptic curve, with the Euler class providing a choice of coordinate. This provides a physical manifestation of the elliptic group law central to the homotopy-theoretic construction of elliptic cohomology.
We construct a cocycle model for complex analytic equivariant elliptic cohomology that refines Grojnowskis theory when the group is connected and Devotos when the group is finite. We then construct Mathai--Quillen type cocycles for equivariant ellipt
We present a calculation, which shows how the moduli of complex analytic elliptic curves arises naturally from the Borel cohomology of an extended moduli space of $U(1)$-bundles on a torus. Furthermore, we show how the analogous calculation, applied
The geometric Langlands correspondence for complex algebraic curves differs from the original Langlands correspondence for number fields in that it is formulated in terms of sheaves rather than functions (in the intermediate case of curves over finit
We introduce and compare two approaches to equivariant homotopy theory in a topological or ordinary Quillen model category. For the topological model category of spaces, we generalize Piacenzas result that the categories of topological presheaves ind
We establish a system of PDE, called open WDVV, that constrains the bulk-deformed superpotential and associated open Gromov-Witten invariants of a Lagrangian submanifold $L subset X$ with a bounding chain. Simultaneously, we define the quantum cohomo