ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron tunneling between neutron-rich nuclei in inhomogeneous dense matter encountered in neutron star crusts can release enormous energy on a short-timescale to power explosive phenomena in neutron stars. In this work we clarify aspects of this pro cess that can occur in the outer regions of neutron stars when oscillations or cataclysmic events increase the ambient density. We use a time-dependent Hartree-Fock-Bogoliubov formalism to determine the rate of neutron diffusion and find that large amounts of energy can be released rapidly. The role of nuclear binding, the two-body interaction and pairing, on the neutron diffusion times is investigated. We consider a one-dimensional quantum diffusion model and extend our analysis to study the impact of diffusion in three-dimensions. We find that these novel neutron transfer reactions can generate energy at the amount of $simeq 10^{40}-10^{44}$ ergs under suitable conditions.
Our understanding of the observed elemental abundance in the universe, stemming from nuclear reactions during the big bang or from nucleosynthesis within stellar environments, requires theoretical analyses based on multidimensional nucleosynthesis ca lculations involving hundreds of nuclei connected via thousands of nuclear processes. Up to recently, full nucleosynthesis network calculations remained computationally expensive and prohibitive. A recent publication by a Chinese group led by YuGang Ma [1] has proved that advanced computational algorithms developed in the last decade for the purpose of studying complex networks are paving the way to finally accomplish this ultimate goal of nuclear astrophysics.
The discovery of gravitational waves has confirmed old theoretical predictions that binary systems formed with compact stars play a crucial role not only for cosmology and nuclear astrophysics. As a byproduct of these and subsequent observations, it is now clear that neutron-star mergers can be a competitive site for the production of half of the elements heavier than iron in the universe following a sequence of fast neutron capture reactions known as the r process. In this article we discuss an effect which has been so far neglected in calculations of r-process nucleosynthesis in neutron star mergers. We show that the corrections due to the neutron environment even at relatively small neutron densities, within the bounds of numerical hydrodynamical simulations of neutron star mergers and after the onset of the r process, are non-negligible and need to be taken into account to accurately describe the elemental abundance as determined by observations.
Reactions with radioactive nuclear beams at relativistic energies have opened new doors to clarify the mechanisms of stellar evolution and cataclysmic events involving stars and during the big bang epoch. Numerous nuclear reactions of astrophysical i nterest cannot be assessed directly in laboratory experiments. Ironically, some of the information needed to describe such reactions, at extremely low energies (e.g., keVs), can only be studied on Earth by using relativistic collisions between heavy ions at GeV energies. In this contribution, we make a short review of experiments with relativistic radioactive beams and of the theoretical methods needed to understand the physics of stars, adding to the knowledge inferred from astronomical observations. We continue by introducing a more detailed description of how the use of relativistic radioactive beams can help to solve astrophysical puzzles and several successful experimental methods. State-of-the-art theories are discussed at some length with the purpose of helping us understand the experimental results reported. The review is not complete and we have focused most of it to traditional methods aiming at the determination of the equation of state of symmetric and asymmetric nuclear matter and the role of the symmetry energy. Whenever possible, under the limitations of our present understanding of experimental data and theory, we try to pinpoint the information still missing to further understand how stars evolve, explode, and how their internal structure might be.
We propose alternatives to coupled-channels calculations with loosely-bound exotic nuclei (CDCC), based on the the random matrix (RMT) and the optical background (OPM) models for the statistical theory of nuclear reactions. The coupled channels equat ions are divided into two sets. The first set, described by the CDCC, and the other set treated with RMT. The resulting theory is a Statistical CDCC (CDCC$_S$), able in principle to take into account many pseudo channels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا