ﻻ يوجد ملخص باللغة العربية
The discovery of gravitational waves has confirmed old theoretical predictions that binary systems formed with compact stars play a crucial role not only for cosmology and nuclear astrophysics. As a byproduct of these and subsequent observations, it is now clear that neutron-star mergers can be a competitive site for the production of half of the elements heavier than iron in the universe following a sequence of fast neutron capture reactions known as the r process. In this article we discuss an effect which has been so far neglected in calculations of r-process nucleosynthesis in neutron star mergers. We show that the corrections due to the neutron environment even at relatively small neutron densities, within the bounds of numerical hydrodynamical simulations of neutron star mergers and after the onset of the r process, are non-negligible and need to be taken into account to accurately describe the elemental abundance as determined by observations.
Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential mode. The interference effect is tested
The direct radiative capture process is well described by the spherical potential model. In order for the model to explain direct captures more accurately, the effect of the nuclear deformation has been added and analyzed in this work, since most nuc
Direct neutron capture reactions play an important role in nuclear astrophysics and applied physics. Since for most unstable short-lived nuclei it is not possible to measure the $(n, gamma)$ cross sections, $(d,p)$ reactions have been used as an alte
We examine the role of neutron capture on 130Sn during r-process freeze-out in the neutrino-driven wind environment of the core-collapse supernova. We find that the global r-process abundance pattern is sensitive to the magnitude of the neutron captu
Neutron tunneling between neutron-rich nuclei in inhomogeneous dense matter encountered in neutron star crusts can release enormous energy on a short-timescale to power explosive phenomena in neutron stars. In this work we clarify aspects of this pro