ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear medium effect on neutron capture reactions during neutron star mergers

83   0   0.0 ( 0 )
 نشر من قبل Kazuyuki Ogata
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of gravitational waves has confirmed old theoretical predictions that binary systems formed with compact stars play a crucial role not only for cosmology and nuclear astrophysics. As a byproduct of these and subsequent observations, it is now clear that neutron-star mergers can be a competitive site for the production of half of the elements heavier than iron in the universe following a sequence of fast neutron capture reactions known as the r process. In this article we discuss an effect which has been so far neglected in calculations of r-process nucleosynthesis in neutron star mergers. We show that the corrections due to the neutron environment even at relatively small neutron densities, within the bounds of numerical hydrodynamical simulations of neutron star mergers and after the onset of the r process, are non-negligible and need to be taken into account to accurately describe the elemental abundance as determined by observations.



قيم البحث

اقرأ أيضاً

Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential mode. The interference effect is tested for neutron-rich $^{82}$Ge and $^{134}$Sn nuclei relevant to $r$-process and light nucleus $^{13}$C which is neutron poison in the $s$-process and produces long-lived radioactive nucleus $^{14}$C ($T_{1/2}=5700$ y). The interference effects in those nuclei are significant around resonances, and low energy region if $s$-wave neutron direct capture is possible. Maxwellian averaged cross sections at $kT=30$ and $300$ keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.
177 - G. W. Fan , X. L. Cai , M. Fukuda 2013
The direct radiative capture process is well described by the spherical potential model. In order for the model to explain direct captures more accurately, the effect of the nuclear deformation has been added and analyzed in this work, since most nuc leuses are not spherical. The results imply that the nuclear deformation largely affects the direct capture and should be taken into account during discussing direct capture reactions.
Direct neutron capture reactions play an important role in nuclear astrophysics and applied physics. Since for most unstable short-lived nuclei it is not possible to measure the $(n, gamma)$ cross sections, $(d,p)$ reactions have been used as an alte rnative indirect tool. We analyze simultaneously $^{48}{rm Ca}(d,p)^{49}{rm Ca}$ at deuteron energies $2, 13, 19$ and 56 MeV and the thermal $(n,gamma)$ reaction at 25 meV. We include results for the ground state and the first excited state of $^{49}$Ca. From the low-energy $(d,p)$ reaction, the neutron asymptotic normalization coefficient (ANC) is determined. Using this ANC, we extract the spectroscopic factor (SF) from the higher energy $(d,p)$ data and the $(n, gamma)$ data. The SF obtained through the 56 MeV $(d,p)$ data are less accurate but consistent with those from the thermal capture. We show that to have a similar dependence on the single particle parameters as in the $(n, gamma)$, the (d,p) reaction should be measured at 30 MeV.
We examine the role of neutron capture on 130Sn during r-process freeze-out in the neutrino-driven wind environment of the core-collapse supernova. We find that the global r-process abundance pattern is sensitive to the magnitude of the neutron captu re cross section of 130Sn. The changes to the abundance pattern include not only a relative decrease in the abundance of 130Sn and an increase in the abundance of 131Sn, but also a shift in the distribution of material in the rare earth and third peak regions.
Neutron tunneling between neutron-rich nuclei in inhomogeneous dense matter encountered in neutron star crusts can release enormous energy on a short-timescale to power explosive phenomena in neutron stars. In this work we clarify aspects of this pro cess that can occur in the outer regions of neutron stars when oscillations or cataclysmic events increase the ambient density. We use a time-dependent Hartree-Fock-Bogoliubov formalism to determine the rate of neutron diffusion and find that large amounts of energy can be released rapidly. The role of nuclear binding, the two-body interaction and pairing, on the neutron diffusion times is investigated. We consider a one-dimensional quantum diffusion model and extend our analysis to study the impact of diffusion in three-dimensions. We find that these novel neutron transfer reactions can generate energy at the amount of $simeq 10^{40}-10^{44}$ ergs under suitable conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا