ﻻ يوجد ملخص باللغة العربية
We propose alternatives to coupled-channels calculations with loosely-bound exotic nuclei (CDCC), based on the the random matrix (RMT) and the optical background (OPM) models for the statistical theory of nuclear reactions. The coupled channels equations are divided into two sets. The first set, described by the CDCC, and the other set treated with RMT. The resulting theory is a Statistical CDCC (CDCC$_S$), able in principle to take into account many pseudo channels.
We present a recently developed theory for the inclusive breakup of three-fragment projectiles within a four-body spectator model cite{CarPLB2017}, for the treatment of the elastic and inclusive non-elastic break up reactions involving weakly bound t
The $^9$C nucleus and related capture reaction, ${^8mathrm{B}}(p,gamma){^9mathrm{C}}$, have been intensively studied with an astrophysical interest. Due to the weakly-bound nature of $^9$C, its structure is likely to be described as the three-body ($
A self-contained Fortran-90 program based on a classical trajectory model with stochastic breakup is presented, which should be a powerful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body
We present an account of the current status of the theoretical treatment of inclusive $(d,p)$ reactions in the breakup-fusion formalism, pointing to some applications and making the connection with current experimental capabilities. Three independent
Nucleon transfer reactions in deuteron-deuteron collisions at energies above the three- and four-body breakup threshold are described using exact four-body equations for transition operators that are solved in the momentum-space framework. Differenti