ﻻ يوجد ملخص باللغة العربية
Our understanding of the observed elemental abundance in the universe, stemming from nuclear reactions during the big bang or from nucleosynthesis within stellar environments, requires theoretical analyses based on multidimensional nucleosynthesis calculations involving hundreds of nuclei connected via thousands of nuclear processes. Up to recently, full nucleosynthesis network calculations remained computationally expensive and prohibitive. A recent publication by a Chinese group led by YuGang Ma [1] has proved that advanced computational algorithms developed in the last decade for the purpose of studying complex networks are paving the way to finally accomplish this ultimate goal of nuclear astrophysics.
An introduction to nucleosynthesis, the creation of the elements in the big bang, in interstellar matter and in stars is given. The two--step process $^4$He(2n,$gamma$)$^6$He and the reverse photodisintegration $^6$He($gamma$,2n)$^4$He involving the
We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough ($T leq 2
We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements.
Nuclear reaction rate ($lambda$) is a significant factor in the process of nucleosynthesis. A multi-layer directed-weighted nuclear reaction network in which the reaction rate as the weight, and neutron, proton, $^4$He and the remainder nuclei as the
Coulomb dissociation is an especially simple and important reaction mechanism. Since the perturbation due to the electric field of the (target) nucleus is exactly known, firm conclusions can be drawn from such measurements. Electromagnetic matrixelem