ترغب بنشر مسار تعليمي؟ اضغط هنا

167 - Frederic Bournaud 2015
The role of disk instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disk galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observation ally, in particular through peanut-shaped bulges. This secular growth of bulges in modern disk galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudo-bulges at slow rates and with long star-formation timescales. Disk instabilities at high redshift (z>1) in moderate-mass to massive galaxies (10^10 to a few 10^11 Msun of stars) are very different from those found in modern spiral galaxies. High-redshift disks are globally unstable and fragment into giant clumps containing 10^8-10^9 Msun of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disk evolution and bulge growth through various mechanisms, on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 10^8 yr. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick disks and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disk instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.
In this paper, we extend some results proved in previous references for three-dimensional Navier-Stokes equations. We show that when the norm of the velocity field is small enough in $L^3({I!!R}^3)$, then a global smooth solution of the Navier-Stokes equations is ensured. We show that a similar result holds when the norm of the velocity field is small enough in $H^{frac{1}{2}}({I!!R}^3)$. The scale invariance of these two norms is discussed.
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
71 - John A. Tomsick 2014
Here we report on Swift and Suzaku observations near the end of an outburst from the black hole transient 4U 1630-47 and Chandra observations when the source was in quiescence. 4U 1630-47 made a transition from a soft state to the hard state ~50 d af ter the main outburst ended. During this unusual delay, the flux continued to drop, and one Swift measurement found the source with a soft spectrum at a 2-10 keV luminosity of L = 1.07e35 erg/s for an estimated distance of 10 kpc. While such transients usually make a transition to the hard state at L/Ledd = 0.3-3%, where Ledd is the Eddington luminosity, the 4U 1630-47 spectrum remained soft at L/Ledd = 0.008/M10% (as measured in the 2-10 keV band), where M10 is the mass of the black hole in units of 10 solar masses. An estimate of the luminosity in the broader 0.5-200 keV bandpass gives L/Ledd = 0.03/M10%, which is still an order of magnitude lower than typical. We also measured an exponential decay of the X-ray flux in the hard state with an e-folding time of 3.39+/-0.06 d, which is much less than previous measurements of 12-15 d during decays by 4U 1630-47 in the soft state. With the ~100 ks Suzaku observation, we do not see evidence for a reflection component, and the 90% confidence limits on the equivalent width of a narrow iron Kalpha emission line are <40 eV for a narrow line and <100 eV for a line of any width, which is consistent with a change of geometry (either a truncated accretion disk or a change in the location of the hard X-ray source) in the hard state. Finally, we report a 0.5-8 keV luminosity upper limit of <2e32 erg/s in quiescence, which is the lowest value measured for 4U 1630-47 to date.
We study outflows driven by Active Galactic Nuclei (AGNs) using high- resolution simulations of idealized z=2 isolated disk galaxies. Episodic accretion events lead to outflows with velocities >1000 km/s and mass outflow rates up to the star formatio n rate (several tens of Msun/yr). Outflowing winds escape perpendicular to the disk with wide opening angles, and are typically asymmetric (i.e. unipolar) because dense gas above or below the AGN in the resolved disk inhibits outflow. Owing to rapid variability in the accretion rates, outflowing gas may be detectable even when the AGN is effectively off. The highest velocity outflows are sometimes, but not always, concentrated within 2-3 kpc of the galactic center during the peak accretion. With our purely thermal AGN feedback model -- standard in previous literature -- the outflowing material is mostly hot (10^6 K) and diffuse (nH<10^(-2) cm-3), but includes a cold component entrained in the hot wind. Despite the powerful bursts and high outflow rates, AGN feedback has little effect on the dense gas in the galaxy disk. Thus AGN-driven outflows in our simulations do not cause rapid quenching of star-formation, although they may remove significant amounts of gas of long (>Gyr) timescales.
We propose that star formation is delayed relative to the inflow rate in rapidly-accreting galaxies at very high redshift (z > 2) because of the energy conveyed by the accreting gas. Accreting gas streams provide fuel for star formation, but they sti r the disk and increase turbulence above the usual levels compatible with gravitational instability, reducing the star formation efficiency in the available gas. After the specific inflow rate has sufficiently decreased - typically at z < 3 - galaxies settle in a self-regulated regime with efficient star formation. An analytic model shows that this interaction between infalling gas and young galaxies can significantly delay star formation and maintain high gas fractions (>40%) down to z = 2, in contrast to other galaxy formation models. Idealized hydrodynamic simulations of infalling gas streams onto primordial galaxies confirm the efficient energetic coupling at z > 2, and suggest that this effect is largely under-resolved in existing cosmological simulations.
59 - Qinghua Tan 2013
We present deep IRAM Plateau de Bure Interferometer (PdBI) observations, searching for CO-emission toward two massive, non-lensed Lyman break galaxies (LBGs) at z=3.216 and 4.058. With one low significance CO detection (3.5 sigma) and one sensitive u pper limit, we find that the CO lines are >~ 3-4 times weaker than expected based on the relation between IR and CO luminosities followed by similarly, massive galaxies at z=0-2.5. This is consistent with a scenario in which these galaxies have low metallicity, causing an increased CO-to-H_2 conversion factor, i.e., weaker CO-emission for a given molecular (H_2) mass. The required metallicities at z>3 are lower than predicted by the fundamental metallicity relation (FMR) at these redshifts, consistent with independent evidence. Unless our galaxies are atypical in this respect, detecting molecular gas in normal galaxies at z>3 may thus remain challenging even with ALMA.
Observations suggest that a large fraction of black hole growth occurs in normal star-forming disk galaxies. Here we describe simulations of black hole accretion in isolated disk galaxies with sufficient resolution (~5 pc) to track the formation of g iant molecular clouds that feed the black hole. Black holes in z=2 gas-rich disks (fgas=50%) occasionally undergo ~10 Myr episodes of Eddington-limited accretion driven by stochastic collisions with massive, dense clouds. We predict that these gas-rich disks host weak AGNs 1/4 of the time, and moderate/strong AGNs 10% of the time. Averaged over 100 Myr timescales and the full distribution of accretion rates, the black holes grow at a few per cent of the Eddington limit -- sufficient to match observations and keep the galaxies on the MBH-Mbulge relation. This suggests that dense cloud accretion in isolated z=2 disks could dominate cosmic black hole growth. In z=0 disks with fgas=10%, Eddington-limited growth is extremely rare because typical gas clouds are smaller and more susceptible to disruption by AGN feedback. This results in an average black hole growth rate in high-fgas galaxies that is up to 1000 times higher than that in low-fgas galaxies. In all our simulations, accretion shows variability by factors of 10^4 on a variety of time scales, with variability at 1 Myr scales driven by the structure of the interstellar medium.
101 - Jared Gabor 2012
I highlight three results from cosmological hydrodynamic simulations that yield a realistic red sequence of galaxies: 1) Major galaxy mergers are not responsible for shutting off star-formation and forming the red sequence. Starvation in hot halos is . 2) Massive galaxies grow substantially (about a factor of 2 in mass) after being quenched, primarily via minor (1:5) mergers. 3) Hot halo quenching naturally explains why galaxies are red when they either (a) are massive or (b) live in dense environments.
While the sources of X-ray and radio emission in the different states of low-mass X-ray binaries are relatively well understood, the origin of the near-infrared (NIR) and optical emission is more often debated. It is likely that the NIR/optical flux originates from an amalgam of different emission regions, because it occurs at the intersecting wavelengths of multiple processes. We aim to identify the NIR/optical emission region(s) of one such low-mass X-ray binary and black hole candidate, XTE J1650-500, via photometric, timing, and spectral analyses. We present unique NIR/optical images and spectra, obtained with the ESO-New Technology Telescope, during the peak of the 2001 outburst of XTE J1650-500. The data suggest that the NIR/optical flux is due to a combination of emission mechanisms including a significant contribution from X-ray reprocessing and, at early times in the hard state, a relativistic jet that is NIR/radio dim compared to similar sources.The jet of XTE J1650-500 is relatively weak compared to that of other black hole low-mass X-ray binaries, possibly because we observe as it is being turned off or quenched at the state transition. While there are several outliers to the radio--X-ray correlation of the hard state of low-mass X-ray binaries, XTE J1650-500 is the first example of an outlier to the NIR/optical--X-ray correlation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا