ﻻ يوجد ملخص باللغة العربية
In this paper, we extend some results proved in previous references for three-dimensional Navier-Stokes equations. We show that when the norm of the velocity field is small enough in $L^3({I!!R}^3)$, then a global smooth solution of the Navier-Stokes equations is ensured. We show that a similar result holds when the norm of the velocity field is small enough in $H^{frac{1}{2}}({I!!R}^3)$. The scale invariance of these two norms is discussed.
The past few years have witnessed increased attention to the quest for Majorana-like excitations in the condensed matter community. As a promising candidate in this race, the one-dimensional chiral Majorana edge mode (CMEM) in topological insulator-s
In this paper, we first prove the local well-posedness of strong solutions to the incompressible Hall-MHD system with initial data $(u_0,B_0)in H^{frac{1}{2}+sigma}(mathbb{R}^3)times H^{frac{3}{2}}(mathbb{R}^3)$ and $sigmain (0,2)$. In particular, if
In this paper, we study the $frac{1}{H}$-variation of stochastic divergence integrals $X_t = int_0^t u_s {delta}B_s$ with respect to a fractional Brownian motion $B$ with Hurst parameter $H < frac{1}{2}$. Under suitable assumptions on the process u,
We have systematically investigated the magnetic moments of spin-$frac{1}{2}$ doubly charmed baryons in the framework of the heavy baryon chiral perturbation theory. In this paper, one loop corrections with intermediate spin-$frac{1}{2}$ and spin-$fr
We consider composition operators $mathscr{C}_varphi$ on the Hardy space of Dirichlet series $mathscr{H}^2$, generated by Dirichlet series symbols $varphi$. We prove two different subordination principles for such operators. One concerns affine symbo