ترغب بنشر مسار تعليمي؟ اضغط هنا

Red Galaxies from Hot Halos in Cosmological Hydro Simulations

100   0   0.0 ( 0 )
 نشر من قبل Jared Gabor
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jared Gabor




اسأل ChatGPT حول البحث

I highlight three results from cosmological hydrodynamic simulations that yield a realistic red sequence of galaxies: 1) Major galaxy mergers are not responsible for shutting off star-formation and forming the red sequence. Starvation in hot halos is. 2) Massive galaxies grow substantially (about a factor of 2 in mass) after being quenched, primarily via minor (1:5) mergers. 3) Hot halo quenching naturally explains why galaxies are red when they either (a) are massive or (b) live in dense environments.

قيم البحث

اقرأ أيضاً

We analyze the stellar growth of Brightest Cluster Galaxies (BCGs) produced by cosmological zoom-in hydrodynamical simulations of the formation of massive galaxy clusters. The evolution of the stellar mass content is studied considering different ape rtures, and tracking backwards either the main progenitor of the $z=0$ BCG or that of the cluster hosting the BCG at $z=0$. Both methods lead to similar results up to $z simeq 1.5$. The simulated BCGs masses at $z=0$ are in agreement with recent observations. In the redshift interval from $z=1$ to $z=0$ we find growth factors 1.3, 1.6 and 3.6 for stellar masses within 30kpc, 50kpc and 10% of $R_{500}$ respectively. The first two factors, and in general the mass evolution in this redshift range, are in agreement with most recent observations. The last larger factor is similar to the growth factor obtained by a semi-analytical model (SAM). Half of the star particles that end up in the inner 50 kpc was typically formed by redshift $sim$ 3.7, while the assembly of half of the BCGs stellar mass occurs on average at lower redshifts $sim 1.5$. This assembly redshift correlates with the mass attained by the cluster at high $z gtrsim 1.3$, due to the broader range of the progenitor clusters at high-$z$. The assembly redshift of BCGs decreases with increasing apertures. Our results are compatible with the {it inside-out} scenario. Simulated BCGs could lack intense enough star formation (SF) at high redshift, while possibly exhibit an excess of residual SF at low redshift.
Red halos are faint, extended and extremely red structures that have been reported around various types of galaxies since the mid-1990s. The colours of these halos are too red to be reconciled with any hitherto known type of stellar population, and i nstead indicative of a very bottom-heavy stellar initial mass function (IMF). Due to the large mass-to-light ratios of such stellar halos, they could contribute substantially to the baryonic masses of galaxies while adding very little to their overall luminosities. The red halos of galaxies therefore constitute potential reservoirs for some of the baryons still missing from inventories in the low-redshift Universe. While most studies of red halos have focused on disk galaxies, a red excess has also been reported in the faint outskirts of blue compact galaxies (BCGs). A bottom-heavy IMF can explain the colours of these structures as well, but due to model degeneracies, stellar populations with standard IMFs and abnormally high metallicities have also been demonstrated to fit the data. Here, we show that due to recent developments in the field of spectral synthesis, the metallicities required in this alternative scenario may be less extreme than previously thought. This suggests that the red excess seen in the outskirts of BCGs may stem from a normal, intermediate-metallicity host galaxy rather than a red halo of the type seen around disk galaxies. The inferred host metallicity does, however, still require the host to be more metal-rich than the gas in the central starburst of BCGs, in contradiction with current simulations of how BCGs form.
We compute the infrared (IR) emission from high-redshift galaxies in cosmological smoothed particle hydrodynamics simulations by coupling the output of the simulation with the population synthesis code `GRASIL by Silva et al. Based on the stellar mas s, metallicity and formation time of each star particle, we estimate the full spectral energy distribution of each star particle from ultraviolet to IR, and compute the luminosity function of simulated galaxies in the Spitzer broadband filters for direct comparison with the available Spitzer observations.
Recently, relations connecting the SMBH mass of central galaxies and global properties of the hosting cluster, such as temperature and mass, were observed. We investigate the correlation between SMBH mass and cluster mass and temperature, their estab lishment and evolution. We compare their scatter to that of the classical $M_{rm BH}-M_{rm BCG}$ relation. We study how gas accretion and BH-BH mergers contribute to SMBH growth across cosmic time. We employed 135 groups and clusters with a mass range $1.4times 10^{13}M_{odot}-2.5times 10^{15} M_{odot}$ extracted from a set of 29 zoom-in cosmological hydro-dynamical simulations where the baryonic physics is treated with various sub-grid models, including feedback by AGN. In our simulations we find that $M_{rm BH}$ correlates well with $M_{500}$ and $T_{500}$, with the scatter around these relations compatible within $2sigma$ with the scatter around $M_{rm BH}-M_{rm BCG}$ at $z=0$. The $M_{rm BH}-M_{500}$ relation evolves with time, becoming shallower at lower redshift as a direct consequence of hierarchical structure formation. On average, in our simulations the contribution of gas accretion to the total SMBH mass dominates for the majority of the cosmic time ($z>0.4$), while in the last 2 Gyr the BH-BH mergers become a larger contributor. During this last process, substructures hosting SMBHs are disrupted in the merger process with the BCG and the unbound stars enrich the diffuse stellar component rather than increase BCG mass. From the results obtained in our simulations with simple sub-grid models we conclude that the scatter around the $M_{rm BH}-T_{500}$ relation is comparable to the scatter around the $M_{rm BH}-M_{rm BCG}$ relation and that, given the observational difficulties related to the estimation of the BCG mass, clusters temperature and mass can be a useful proxy for the SMBHs mass, especially at high redshift.
Studies of cluster mass and velocity anisotropy profiles are useful tests of dark matter models, and of the assembly history of clusters of galaxies. These studies might be affected by unknown systematics caused by projection effects. We aim at testi ng observational methods for the determination of mass and velocity anisotropy profiles of clusters of galaxies. Particularly, we focus on the MAMPOSSt technique (Mamon et al. 2013). We use results from two semi-analytic models of galaxy formation coupled with high-resolution N-body cosmological simulations, the catalog of De Lucia & Blaizot (2007) and the FIRE catalog based on the new GAlaxy Evolution and Assembly model. We test the reliability of the Jeans equation in recovering the true mass profile when full projected phase-space information is available. We examine the reliability of the MAMPOSSt method in estimating the true mass and velocity anisotropy profiles of the simulated halos when only projected phase-space information is available, as in observations. The spherical Jeans equation provides a reliable tool for the determination of cluster mass profiles, also for subsamples of tracers separated by galaxy color. Results are equally good for prolate and oblate clusters. Using only projected phase-space information, MAMPOSSt provides estimates of the mass profile with a standard deviation of 35-69 %, and a negative bias of 7-17 %, nearly independent of radius, and that we attribute to the presence of interlopers in the projected samples. The bias changes sign, that is, the mass is over-estimated, for prolate clusters with their major axis aligned along the line-of-sight. MAMPOSSt measures the velocity anisotropy profiles accurately in the inner cluster regions, with a slight overestimate in the outer regions, both for the whole sample of observationally-identified cluster members and separately for red and blue galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا