ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmology with cosmic shear observations: a review

87   0   0.0 ( 0 )
 نشر من قبل Martin Kilbinger
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Martin Kilbinger




اسأل ChatGPT حول البحث

Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

قيم البحث

اقرأ أيضاً

We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey a rea. Using cosmic shear 2-point measurements over three redshift bins we find $sigma_8 (Omega_{rm m}/0.3)^{0.5} = 0.81 pm 0.06$ (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About $20$% of our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both datasets. Our uncertainties are $sim$30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of $sigma_8 (Omega_{rm m}/0.3)^{0.5}$ is present regardless of the value of $w$.
We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeli ng of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a $0.8sigma$ reduction in the DES-inferred value for $S_8$, which decreases to a $0.5sigma$ reduction when including a systematic redshift calibration error model from mock DES data based on the MICE2 simulation. The combined KV450 + DES-Y1 constraint on $S_8 = 0.762^{+0.025}_{-0.024}$ is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of $2.5sigma$. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak lensing surveys.
Weak lensing by large-scale structure is a powerful probe of cosmology and of the dark universe. This cosmic shear technique relies on the accurate measurement of the shapes and redshifts of background galaxies and requires precise control of systema tic errors. The Monte Carlo Control Loops (MCCL) is a forward modelling method designed to tackle this problem. It relies on the Ultra Fast Image Generator (UFig) to produce simulated images tuned to match the target data statistically, followed by calibrations and tolerance loops. We present the first end-to-end application of this method, on the Dark Energy Survey (DES) Year 1 wide field imaging data. We simultaneously measure the shear power spectrum $C_{ell}$ and the redshift distribution $n(z)$ of the background galaxy sample. The method includes maps of the systematic sources, Point Spread Function (PSF), an Approximate Bayesian Computation (ABC) inference of the simulation model parameters, a shear calibration scheme, and the fast estimation of the covariance matrix. We find a close statistical agreement between the simulations and the DES Y1 data using an array of diagnostics. In a non-tomographic setting, we derive a set of $C_ell$ and $n(z)$ curves that encode the cosmic shear measurement, as well as the systematic uncertainty. Following a blinding scheme, we measure the combination of $Omega_m$, $sigma_8$, and intrinsic alignment amplitude $A_{rm{IA}}$, defined as $S_8D_{rm{IA}} = sigma_8(Omega_m/0.3)^{0.5}D_{rm{IA}}$, where $D_{rm{IA}}=1-0.11(A_{rm{IA}}-1)$. We find $S_8D_{rm{IA}}=0.895^{+0.054}_{-0.039}$, where systematics are at the level of roughly 60% of the statistical errors. We discuss these results in the context of earlier cosmic shear analyses of the DES Y1 data. Our findings indicate that this method and its fast runtime offer good prospects for cosmic shear measurements with future wide-field surveys.
We present here the cosmo-SLICS, a new suite of simulations specially designed for the analysis of current and upcoming weak lensing data beyond the standard two-point cosmic shear. We sample the $[Omega_{rm m}, sigma_8, h, w_0]$ parameter space at 2 5 points organised in a Latin hyper-cube, spanning a range that contains most of the $2sigma$ posterior distribution from ongoing lensing surveys. At each of these nodes we evolve a pair of $N$-body simulations in which the sampling variance is highly suppressed, and ray-trace the volumes 800 times to further increase the effective sky coverage. We extract a lensing covariance matrix from these pseudo-independent light-cones and show that it closely matches a brute-force construction based on an ensemble of 800 truly independent $N$-body runs. More precisely, a Fisher analysis reveals that both methods yield marginalized two-dimensional constraints that vary by less than 6% in area, a result that holds under different survey specifications and that matches to within 15% the area obtained from an analytical covariance calculation. Extending this comparison with our 25 $w$CDM models, we probe the cosmology dependence of the lensing covariance directly from numerical simulations, reproducing remarkably well the Fisher results from the analytical models at most cosmologies. We demonstrate that varying the cosmology at which the covariance matrix is evaluated in the first place might have an order of magnitude greater impact on the parameter constraints than varying the choice of covariance estimation technique. We present a test case in which we generate fast predictions for both the lensing signal and its associated variance with a flexible Gaussian process regression emulator, achieving an accuracy of a few percent on the former and 10% on the latter.
We measure cosmic weak lensing shear power spectra with the Subaru Hyper Suprime-Cam (HSC) survey first-year shear catalog covering 137deg$^2$ of the sky. Thanks to the high effective galaxy number density of $sim$17 arcmin$^{-2}$ even after conserva tive cuts such as magnitude cut of $i<24.5$ and photometric redshift cut of $0.3leq z leq 1.5$, we obtain a high significance measurement of the cosmic shear power spectra in 4 tomographic redshift bins, achieving a total signal-to-noise ratio of 16 in the multipole range $300 leq ell leq 1900$. We carefully account for various uncertainties in our analysis including the intrinsic alignment of galaxies, scatters and biases in photometric redshifts, residual uncertainties in the shear measurement, and modeling of the matter power spectrum. The accuracy of our power spectrum measurement method as well as our analytic model of the covariance matrix are tested against realistic mock shear catalogs. For a flat $Lambda$ cold dark matter ($Lambda$CDM) model, we find $S_8equiv sigma_8(Omega_{rm m}/0.3)^alpha=0.800^{+0.029}_{-0.028}$ for $alpha=0.45$ ($S_8=0.780^{+0.030}_{-0.033}$ for $alpha=0.5$) from our HSC tomographic cosmic shear analysis alone. In comparison with Planck cosmic microwave background constraints, our results prefer slightly lower values of $S_8$, although metrics such as the Bayesian evidence ratio test do not show significant evidence for discordance between these results. We study the effect of possible additional systematic errors that are unaccounted in our fiducial cosmic shear analysis, and find that they can shift the best-fit values of $S_8$ by up to $sim 0.6sigma$ in both directions. The full HSC survey data will contain several times more area, and will lead to significantly improved cosmological constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا