ترغب بنشر مسار تعليمي؟ اضغط هنا

352 - C.M. Bouchard 2015
I review recently completed (since Lattice 2013) and ongoing lattice calculations in charm and bottom flavor physics. A comparison of the precision of lattice and experiment is made using both current experimental results and projected experimental p recision in 2020. The combination of experiment and theory reveals several tensions between nature and the Standard Model. These tensions are reviewed in light of recent lattice results.
We report on the status of our calculation of the hadronic matrix elements for neutral $B$-meson mixing with asqtad sea and valence light quarks and using the Wilson clover action with the Fermilab interpretation for the $b$ quark. We calculate the m atrix elements of all five local operators that contribute to neutral $B$-meson mixing both in and beyond the Standard Model. We use MILC ensembles with $N_f=2+1$ dynamical flavors at four different lattice spacings in the range $a approx 0.045$--$0.12$~fm, and with light sea-quark masses as low as 0.05 times the physical strange quark mass. We perform a combined chiral-continuum extrapolation including the so-called wrong-spin contributions in simultaneous fits to the matrix elements of the five operators. We present a complete systematic error budget and conclude with an outlook for obtaining final results from this analysis.
We present an update on our calculation of the short-distance $D^0$-meson mixing hadronic matrix elements. The analysis is performed on the MILC collaborations $N_f=2+1$ asqtad configurations. We use asqtad light valence quarks and the Sheikoleslami- Wohlert action with the Fermilab interpretation for the valence charm quark. SU(3), partially quenched, rooted, staggered heavy-meson chiral perturbation theory is used to extrapolate to the chiral-continuum limit. Systematic errors arising from the chiral-continuum extrapolation, heavy-quark discretization, and quark-mass uncertainties are folded into the statistical errors from the chiral-continuum fits with methods of Bayesian inference. A preliminary error budget for all five operators is presented.
We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD using the experimentally determined value of $f_{pi^+}$ for normalization. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors---up, down, strange, and charm---and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from $aapprox 0.06$ fm to $0.15$ fm are included in the analysis to control the extrapolation to the continuum limit. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2}) mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5}) mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately two to four times smaller than those of the most precise previous lattice calculations. We also obtain $f_{K^+}/f_{pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively.
We report the first lattice QCD calculation of the form factors for the standard model tree-level decay $B_sto K ell u$. In combination with future measurement, this calculation will provide an alternative exclusive semileptonic determination of $|V_ {ub}|$. We compare our results with previous model calculations, make predictions for differential decay rates and branching fractions, and predict the ratio of differential branching fractions between $B_sto Ktau u$ and $B_sto Kmu u$. We also present standard model predictions for differential decay rate forward-backward asymmetries, polarization fractions, and calculate potentially useful ratios of $B_sto K$ form factors with those of the fictitious $B_stoeta_s$ decay. Our lattice simulations utilize NRQCD $b$ and HISQ light quarks on a subset of the MILC Collaborations $2+1$ asqtad gauge configurations, including two lattice spacings and a range of light quark masses.
184 - C.M. Bouchard 2012
We use lattice QCD to calculate the B-mixing hadronic matrix elements for a basis of effective four-quark operators that spans the space of all possible contributions in, and beyond, the Standard Model. We present results for the SU(3)-breaking ratio and discuss our ongoing calculation of the mixing matrix elements, including the first calculation of the beyond the Standard Model matrix elements from unquenched lattice QCD.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا