ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutral B-meson mixing parameters in and beyond the SM with 2+1 flavor lattice QCD

65   0   0.0 ( 0 )
 نشر من قبل Aida El-Khadra
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the status of our calculation of the hadronic matrix elements for neutral $B$-meson mixing with asqtad sea and valence light quarks and using the Wilson clover action with the Fermilab interpretation for the $b$ quark. We calculate the matrix elements of all five local operators that contribute to neutral $B$-meson mixing both in and beyond the Standard Model. We use MILC ensembles with $N_f=2+1$ dynamical flavors at four different lattice spacings in the range $a approx 0.045$--$0.12$~fm, and with light sea-quark masses as low as 0.05 times the physical strange quark mass. We perform a combined chiral-continuum extrapolation including the so-called wrong-spin contributions in simultaneous fits to the matrix elements of the five operators. We present a complete systematic error budget and conclude with an outlook for obtaining final results from this analysis.

قيم البحث

اقرأ أيضاً

We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations.
We present an update of the Fermilab-MILC Collaborations calculation of hadronic matrix elements for B^0-bar{B^0} mixing. This work is a more extended analysis than our recent publication of the SU(3)-breaking ratio xi [arXiv:1205.7013]. We use the a sqtad staggered action for light valence quarks in combination with the Fermilab interpretation of the Sheikoleslami-Wohlert action for heavy quarks. The calculations use MILCs 2+1 flavor asqtad ensembles. Ensembles include four lattice spacings from approximately 0.125 fm to 0.045 fm and up/down to strange quark mass ratios as low as 0.05. Our calculation covers the complete set of five operators needed to describe B mixing in the Standard Model and beyond. In addition to an update including a fuller set of analyzed data, we comment on the form of the staggered ChPT extrapolation function.
We study $B_d$ and $B_s$ mixing in unquenched lattice QCD employing the MILC collaboration gauge configurations that include u, d, and s sea quarks based on the improved staggered quark (AsqTad) action and a highly improved gluon action. We implement the valence light quarks also with the AsqTad action and use the nonrelativistic NRQCD action for the valence b quark. We calculate hadronic matrix elements necessary for extracting CKM matrix elements from experimental measurements of mass differences $Delta M_d$ and $Delta M_s$. We find $xi = f_{B_s} sqrt{hat{B}_{B_s}} / f_{B_d} sqrt{hat{B}_{B_d}} = 1.258(33)$, $f_{B_d} sqrt{hat{B}_{B_d}} = 216(15)$ MeV and $f_{B_s} sqrt{hat{B}_{B_s}} = 266(18)$ MeV. We also update previous results for decay constants and obtain $f_{B_d} = 190(13)$ MeV, $f_{B_s} = 231(15)$ MeV and $f_{B_s}/f_{B_d} = 1.226(26)$. The new lattice results lead to updated values for the ratio of CKM matrix elements $|V_{td}|/|V_{ts}|$ and for the Standard Model prediction for $Br(B_s rightarrow mu^+ mu^-)$ with reduced errors. We determine $|V_{td}|/|V_{ts}| = 0.214(1)(5)$ and $Br(B_s rightarrow mu^+ mu^-) = 3.19(19) times 10^{-9}$.
We calculate the bag parameters for neutral $B$-meson mixing in and beyond the Standard Model, in full four-flavour lattice QCD for the first time. We work on gluon field configurations that include the effect of $u$, $d$, $s$ and $c$ sea quarks with the Highly Improved Staggered Quark (HISQ) action at three values of the lattice spacing and with three $u/d$ quark masses going down to the physical value. The valence $b$ quarks use the improved NRQCD action and the valence light quarks, the HISQ action. Our analysis was blinded. Our results for the bag parameters for all five operators are the most accurate to date. For the Standard Model operator between $B_s$ and $B_d$ mesons we find: $hat{B}_{B_s}=1.232(53)$, $hat{B}_{B_d}=1.222(61)$. Combining our results with lattice QCD calculations of the decay constants using HISQ quarks from the Fermilab/MILC collaboration and with experimental values for $B_s$ and $B_d$ oscillation frequencies allows determination of the CKM elements $V_{ts}$ and $V_{td}$. We find $V_{ts} = 0.04189(93)$, $V_{td} = 0.00867(23)$ and $V_{ts}/V_{td} = 0.2071(27)$. Our results agree well (within $2sigma$) with values determined from CKM unitarity constraints based on tree-level processes (only). Using a ratio to $Delta M$ in which CKM elements cancel in the Standard Model, we determine the branching fractions ${text{Br}}(B_srightarrow mu^+mu^-) = 3.81(18) times 10^{-9}$ and ${text{Br}}(B_drightarrow mu^+mu^-) = 1.031(54) times 10^{-10}$. We also give results for matrix elements of the operators $R_0$, $R_1$ and $tilde{R}_1$ that contribute to neutral $B$-meson width differences.
We calculate the B-meson decay constants f_B, f_Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall f ermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ~ 0.11, 0.086 fm with unitary pion masses as light as M_pi ~ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(alpha_s a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_B0 = 199.5(12.6) MeV, f_B+ = 195.6(14.9) MeV, f_Bs = 235.4(12.2) MeV, f_Bs/f_B0 = 1.197(50), and f_Bs/f_B+ = 1.223(71), where the errors are statistical and total systematic added in quadrature. These results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of $B$-meson decay constants using staggered light quarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا