ترغب بنشر مسار تعليمي؟ اضغط هنا

Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

103   0   0.0 ( 0 )
 نشر من قبل Javad Komijani
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD using the experimentally determined value of $f_{pi^+}$ for normalization. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors---up, down, strange, and charm---and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from $aapprox 0.06$ fm to $0.15$ fm are included in the analysis to control the extrapolation to the continuum limit. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2}) mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5}) mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately two to four times smaller than those of the most precise previous lattice calculations. We also obtain $f_{K^+}/f_{pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively.

قيم البحث

اقرأ أيضاً

We calculate the B-meson decay constants f_B, f_Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall f ermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ~ 0.11, 0.086 fm with unitary pion masses as light as M_pi ~ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(alpha_s a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_B0 = 199.5(12.6) MeV, f_B+ = 195.6(14.9) MeV, f_Bs = 235.4(12.2) MeV, f_Bs/f_B0 = 1.197(50), and f_Bs/f_B+ = 1.223(71), where the errors are statistical and total systematic added in quadrature. These results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of $B$-meson decay constants using staggered light quarks.
71 - C. Aubin , C. Bernard , C. DeTar 2005
We present the first lattice QCD calculation with realistic sea quark content of the D^+ meson decay constant f_{D^+}. We use the MILC Collaborations publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up an d down) much lighter than a third (strange). We obtain f_{D^+} = 201 +/- 3 +/- 17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f_{D_s} = 249 +/- 3 +/- 16 MeV for the D_s meson.
We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavo rs. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2}) mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5}) mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. We also obtain $f_{K^+}/f_{pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively.
117 - A. Bazavov , C. Bernard , N. Brown 2017
We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks. We analyze over tw enty isospin-symmetric ensembles with six lattice spacings down to $aapprox 0.03$~fm and several values of the light-quark mass down to the physical value $frac{1}{2}(m_u+m_d)$. We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the $B$-meson decay constants with the HISQ action for the first time directly at the physical $b$-quark mass. We obtain the most precise determinations to-date of the $D$- and $B$-meson decay constants and their ratios, $f_{D^+} = 212.7(0.6)$~MeV, $f_{D_s} = 249.9(0.4)$~MeV, $f_{D_s}/f_{D^+} = 1.1749(16)$, $f_{B^+} = 189.4 (1.4)$~MeV, $f_{B_s} = 230.7(1.3)$~MeV, $f_{B_s}/f_{B^+} = 1.2180(47)$, where the errors include statistical and all systematic uncertainties. Our results for the $B$-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the Standard-Model predictions for the rare leptonic decays $overline{mathcal{B}}(B_s to mu^+mu^-) = 3.64(11) times 10^{-9}$, $overline{mathcal{B}}(B^0 to mu^+mu^-) = 1.00(3) times 10^{-10}$, and $overline{mathcal{B}}(B^0 to mu^+mu^-)/overline{mathcal{B}}(B_s to mu^+mu^-) = 0.0273(9)$ to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities $f_{p4s}$, $M_{p4s}$, and $R_{p4s}$. We obtain the most precise lattice-QCD determination to date of the ratio $f_{K^+}/f_{pi^+} = 1.1950(^{+16}_{-23})$~MeV.
On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $phi$. The lattice size is $48^3times96$, which corresponds to a spatial extension of $sim5.5$ fm with the lattice spacing $aapprox 0.114$ fm. For the valence light, strange and charm quarks, we use overlap fermions at several mass points close to their physical values. Our results at the physical point are $f_D=213(5)$ MeV, $f_{D_s}=249(7)$ MeV, $f_{D^*}=234(6)$ MeV, $f_{D_s^*}=274(7)$ MeV, and $f_phi=241(9)$ MeV. The couplings of $D^*$ and $D_s^*$ to the tensor current ($f_V^T$) can be derived, respectively, from the ratios $f_{D^*}^T/f_{D^*}=0.91(4)$ and $f_{D_s^*}^T/f_{D_s^*}=0.92(4)$, which are the first lattice QCD results. We also obtain the ratios $f_{D^*}/f_D=1.10(3)$ and $f_{D_s^*}/f_{D_s}=1.10(4)$, which reflect the size of heavy quark symmetry breaking in charmed mesons. The ratios $f_{D_s}/f_{D}=1.16(3)$ and $f_{D_s^*}/f_{D^*}=1.17(3)$ can be taken as a measure of SU(3) flavor symmetry breaking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا