ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$ in order to study the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for $T leq$ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP ($rho(T) sim T^{3/2}$ and $gamma(T) sim gamma_0 - b T^{1/2}$). However, for 2 $leq T leq$ 10 K, the susceptibility and specific heat vary as $log T$ and the resistivity varies linearly with temperature. Furthermore, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. We suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.
We have performed elastic and inelastic neutron experiments on single crystal samples of the coordination polymer compound CuF2(H2O)2(pyz) (pyz=pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements in dicate a collinear antiferromagnetic structure with moments oriented along the [0.7 0 1] real-space direction and an ordered moment of 0.60 +/- 0.03 muB/Cu. This value is significantly smaller than the single ion magnetic moment, reflecting the presence of strong quantum fluctuations. The spin wave dispersion from magnetic zone center to the zone boundary points (0.5 1.5 0) and (0.5 0 1.5) can be described by a two dimensional Heisenberg model with a nearest neighbor magnetic exchange constant J2d = 0.934 +/-0.0025 meV. The inter-layer interaction Jperp in this compound is less than 1.5% of J2d. The spin excitation energy at the (0.5 0.5 0.5) zone boundary point is reduced when compared to the (0.5 1 0.5) zone boundary point by ~10.3 +/- 1.4 %. This zone boundary dispersion is consistent with quantum Monte Carlo and series expansion calculations which include corrections for quantum fluctuations to linear spin wave theory.
Several physical properties of the superconducting Heusler compounds, focusing on two systems (Y, Lu, Sc)Pd2Sn and APd2M, where A=Hf, Zr and M=Al, In, are summarized and compared. The analysis of the data shows the importance of the electron-phonon c oupling for superconductivity in this family. We report the superconducting parameters of YPd2Sn, which has the highest Tc among all known Heusler superconductors.
We report extensive measurements on a new compound (Yb0.24Sn0.76)Ru that crystallizes in the cubic CsCl structure. Valence band photoemission and L3 x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scatteri ng (INS) indicates that the eight-fold degenerate J-multiplet of Yb3+ is split by the crystalline electric field (CEF) into a {Gamma}7 doublet ground state and a {Gamma}8 quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a {Gamma}6 excited state resides at 32 meV; however, the {Gamma}8/{Gamma}6 transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch- Gruneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K, there is a peak in specific heat that is too broad to represent a magnetic phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand, this peak also is too narrow to represent the Kondo effect in the {Gamma}7 ground state doublet. On the basis of the field-dependence of the specific heat, we argue that antiferromagnetic shortrange order (possibly co-existing with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound.
We report inelastic neutron scattering measurements of crystal field transitions in PrFeAsO, PrFeAsO0.87F0.13, and NdFeAsO0.85F0.15. Doping with fluorine produces additional crystal field excitations, providing evidence that there are two distinct ch arge environments around the rare earth ions, with probabilities that are consistent with a random distribution of dopants on the oxygen sites. The 4f electrons of the Pr3+ and Nd3+ ions have non-magnetic and magnetic ground states, respectively, indicating that the enhancement of Tc compared to LaFeAsO1-xFx is not due to rare earth magnetism.
We have performed magnetic susceptibility, specific heat, resistivity, and inelastic neutron scattering measurements on a single crystal of the heavy Fermion compound Ce(Ni$_{0.935}$Pd$_{0.065}$)$_2$Ge$_2$, which is believed to be close to a quantum critical point (QCP) at T = 0. At lowest temperature(1.8-3.5 K), the magnetic susceptibility behaves as $chi(T)-chi (0)$ $propto$ $T^{-1/6}$ with $chi (0) = 0.032 times 10^{-6}$ m$^3$/mole (0.0025 emu/mole). For $T<$ 1 K, the specific heat can be fit to the formula $Delta C/T = gamma_0 - T^{1/2}$ with $gamma_0$ of order 700 mJ/mole-K$^2$. The resistivity behaves as $rho = rho_0 + AT^{3/2}$ for temperatures below 2 K. This low temperature behavior for $gamma (T)$ and $rho (T)$ is in accord with the SCR theory of Moriya and Takimotocite{Moriya}. The inelastic neutron scattering spectra show a broad peak near 1.5 meV that appears to be independent of $Q$; we interpret this as Kondo scattering with $T_K =$ 17 K. In addition, the scattering is enhanced near $Q$=(1/2, 1/2, 0) with maximum scattering at $Delta E$ = 0.45 meV; we interpret this as scattering from antiferromagnetic fluctuations near the antiferromagnetic QCP.
In an effort to explore the differences between rare-earth-based and uranium-based heavy Fermion (HF) compounds that reflect the underlying difference between local 4$f$ moments and itinerant 5$f$ moments we analyze scaling laws that relate the low t emperature neutron spectra of the primary (Kondo-esque) spin fluctuation to the specific heat and susceptibility. While the scaling appears to work very well for the rare earth intermediate valence compounds, for a number of key uranium compounds the scaling laws fail badly. There are two main reasons for this failure. First, the presence of antiferromagnetic (AF) fluctuations, which contribute significantly to the specific heat, alters the scaling ratios. Second, the scaling laws require knowledge of the high temperature moment degeneracy, which is often undetermined for itinerant 5$f$ electrons. By making plausible corrections for both effects, better scaling ratios are obtained for some uranium compounds. We point out that while both the uranium HF compounds and the rare earth intermediate valence (IV) compounds have spin fluctuation characteristic energies of order 5 - 25 meV, they differ in that the AF fluctuations that are usually seen in the U compounds are never seen in the rare earth IV compounds. This suggests that the 5f itineracy increases the f-f exchange relative to the rare earth case.
We present neutron diffraction measurements on single crystal samples of non-superconducting Ba(Fe1-xCrx)2As2 as a function of Cr-doping for 0<=x<=0.47. The average SDW moment is independent of concentration for x<=0.2 and decreases rapidly for x>=0. 3. For concentrations in excess of 30% chromium, we find a new G-type antiferromagnetic phase which rapidly becomes the dominant magnetic ground state. Strong magnetism is observed for all concentrations measured and competition between these ordered states and superconductivity naturally explains the absence of superconductivity in the Cr-doped materials.
Magnetic susceptibility results for single crystals of the new cubic compounds UT$_2$Al$_{20}$ (T=Mn, V, and Mo) are reported. Magnetization, specific heat, resistivity, and neutron diffraction results for a single crystal and neutron diffraction and inelastic spectra for a powder sample are reported for UMn$_2$Al$_{20}$. For T = V and Mo, temperature independent Pauli paramagnetism is observed. For UMn$_2$Al$_{20}$, a ferromagnetic transition is observed in the magnetic susceptibility at $T_c$ = 20 K. The specific heat anomaly at $T_c$ is very weak while no anomaly in the resistivity is seen at $T_c$. We discuss two possible origins for this behavior of UMn$_2$Al$_{20}$: moderately small moment itinerant ferromagnetism, or induced local moment ferromagnetism.
We report measurements of inelastic neutron scattering, magnetic susceptibility, magnetization, and the magnetic field dependence of the specific heat for the heavy Fermion compounds Ce$_3$In and Ce$_3$Sn. The neutron scattering results show that the excited crystal field levels have energies $E_1$ = 13.2 meV, $E_2$ = 44.8 meV for Ce$_3$In and $E_1$ = 18.5 meV, $E_2$ = 36.1 meV for Ce$_3$Sn. The Kondo temperature deduced from the quasielastic linewidth is 17 K for Ce$_3$In and 40 K for Ce$_3$Sn. The low temperature behavior of the specific heat, magnetization, and susceptibility can not be well-described by J=1/2 Kondo physics alone, but require calculations that include contributions from the Kondo effect, broadened crystal fields, and ferromagnetic correlations, all of which are known to be important in these compounds. We find that in Ce$_3$In the ferromagnetic fluctuation makes a 10-15 % contribution to the ground state doublet entropy and magnetization. The large specific heat coefficient $gamma$ in this heavy fermion system thus arises more from the ferromagnetic correlations than from the Kondo behavior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا