ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal fields, disorder, and antiferromagnetic short-range order in Yb0.24Sn0.76Ru

97   0   0.0 ( 0 )
 نشر من قبل Tomasz Klimczuk
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report extensive measurements on a new compound (Yb0.24Sn0.76)Ru that crystallizes in the cubic CsCl structure. Valence band photoemission and L3 x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scattering (INS) indicates that the eight-fold degenerate J-multiplet of Yb3+ is split by the crystalline electric field (CEF) into a {Gamma}7 doublet ground state and a {Gamma}8 quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a {Gamma}6 excited state resides at 32 meV; however, the {Gamma}8/{Gamma}6 transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch- Gruneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K, there is a peak in specific heat that is too broad to represent a magnetic phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand, this peak also is too narrow to represent the Kondo effect in the {Gamma}7 ground state doublet. On the basis of the field-dependence of the specific heat, we argue that antiferromagnetic shortrange order (possibly co-existing with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound.

قيم البحث

اقرأ أيضاً

311 - R. Baral , H. S. Fierro , C. Rueda 2019
Features of low dimensional magnetism resulting from a square-net arrangement of Co atoms in trirutile CoTa$_2$O$_6$ is studied in the present work by means of density functional theory and is compared with the experimental results of specific heat a nd neutron diffraction. The small total energy differences between the ferromagnetic (FM) and antiferromagnetic (AFM) configuration of CoTa$_2$O$_6$ shows that competing magnetic ground states exist, with the possibility of transition from FM to AFM phase at low temperature. Our calculation further suggests the semi-conducting behavior for CoTa$_2$O$_6$ with a band gap of $sim$0.41 eV. The calculated magnetic anisotropy energy is $sim$2.5 meV with its easy axis along the [100] (in-plane) direction. Studying the evolution of magnetism in Co$_{1-x}$Mg$_x$Ta$_2$O$_6$ (x = 0, 0.1, 0.3, 0.5, 0.7 and 1). it is found that the sharp AFM transition exhibited by CoTa$_2$O$_6$ at $T_N$ = 6.2 K in its heat capacity vanishes with Mg-dilution, indicating the obvious effect of weakening the superexchange pathways of Co. The current specific heat study reveals the robust nature of $T_N$ for CoTa$_2$O$_6$ in applied magnetic fields. Clear indication of short-range magnetism is obtained from the magnetic entropy, however, diffuse components are absent in neutron diffraction data. At $T_N$, CoTa$_2$O$_6$ enters a long-range ordered magnetic state which can be described using a propagation vector, (1/4, 1/4, 0). Upon Mg-dilution at $x geq$0.1, the long-range ordered magnetism is destroyed. The present results should motivate an investigation of magnetic excitations in this low-dimensional anisotropic magnet.
The double-perovskite A$_2$BBO$_6$ with heavy transition metal ions on the ordered B sites is an important family of compounds to study the interplay between electron correlation and spin-orbit coupling (SOC). Here we prepared high-quality Sr$_2$MgRe O$_6$ powder and single-crystal samples and performed non-resonant and resonant synchrotron x-ray diffraction experiments to investigate its magnetic ground state. By combining the magnetic susceptibility and heat capacity measurements, we conclude that Sr$_2$MgReO$_6$ exhibits a layered antiferromagnetic (AF) order at temperatures below $sim$ 55 K with a propagation vector q = (001), which contrasts the previously suspected spin glass state. Our works clarify the magnetic order in Sr$_2$MgReO$_6$ and demonstrate it as a candidate system to look for magnetic octupolar orders and exotic spin dynamics.
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the N{e}el temperature $T_N$ = 360(1) K. Below $T_N$ the critical exponent descr ibing the magnetic order parameter is $beta$ = 0.33$-$0.35, consistent with a three dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to $T_{SRO}$ = 650(10) K. The magnetic susceptibility shows a weak anomaly at $T_{SRO}$ and no anomaly at $T_N$. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above $T_N$ nearly two- dimensional, short-range magnetic order is present with a correlation length of 9.3(3) {AA} within the Mn layers at 400 K. The inelastic scattering data reveal a spin-gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasi-elastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above $T_N$ is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.
129 - R. Wallauer , S. Sanna , E. Lahoud 2015
Angle-resolved photoemission spectroscopy (ARPES) is one of most powerful techniques to unravel the electronic properties of layered materials and in the last decades it has lead to a significant progress in the understanding of the band structures o f cuprates, pnictides and other materials of current interest. On the other hand, its application to Mott-Hubbard insulating materials where a Fermi surface is absent has been more limited. Here we show that in these latter materials, where electron spins are localized, ARPES may provide significant information on the spin correlations which can be complementary to the one derived from neutron scattering experiments. Sr$_2$Cu$_{1-x}$Zn$_x$O$_2$Cl$_2$, a prototype of diluted spin $S=1/2$ antiferromagnet (AF) on a square lattice, was chosen as a test case and a direct correspondence between the amplitude of the spectral weight beyond the AF zone boundary derived from ARPES and the spin correlation length $xi$ estimated from $^{35}$Cl NMR established. It was found even for correlation lengths of a few lattice constants a significant spectral weight in the back-bended band is present which depends markedly on $xi$. Moreover the temperature dependence of that spectral weight is found to scale with the $x$ dependent spin-stiffness. These findings prove that ARPES technique is very sensitive to short-range correlations and its relevance in the understanding of the electronic correlations in cuprates is discussed.
We report the existence of ferromagnetic correlations (FMC) in paramagnetic (PM) matrix of cubic La1-xSrxMnO3-{delta} (x = 0.80, 0.85) well above its coupled structural, magnetic and electronic phase transitions. The dc-magnetization vs temperature [ M(T)] behaviour under different magnetic fields (from 100 Oe to 70 kOe) shows the presence of short range magnetic correlations up to (TFMC ~) 365 K, far above the antiferromagnetic ordering temperatures (TN =) 260 K and 238 K for x=0.80 and 0.85, respectively. More importantly the observed short-range FMC survive even up to 70 kOe, which indicates their robust nature. The temperature region between TN to TFMC is dominated by the presence of correlated ferromagnetic (FM) entities within the PM matrix and stabilized due to A-site chemical disorder. Our results further illustrate that for the studied compositions, the oxygen off-stoichiometry does not have any significant effect on the nature and strength of these FM entities; however, FM interactions increase in the oxygen deficient samples. These compositions are the unique examples, where the presence of FMC is observed in an undistorted basic cubic perovskite lattice well above TN and therefore are novel to understand the physics behind the colossal magneto-resistance effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا