ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial Inhomogeneity in RFeAsO1-xFx (R =Pr, Nd) Determined from Rare Earth Crystal Field Excitations

112   0   0.0 ( 0 )
 نشر من قبل Ray Osborn
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report inelastic neutron scattering measurements of crystal field transitions in PrFeAsO, PrFeAsO0.87F0.13, and NdFeAsO0.85F0.15. Doping with fluorine produces additional crystal field excitations, providing evidence that there are two distinct charge environments around the rare earth ions, with probabilities that are consistent with a random distribution of dopants on the oxygen sites. The 4f electrons of the Pr3+ and Nd3+ ions have non-magnetic and magnetic ground states, respectively, indicating that the enhancement of Tc compared to LaFeAsO1-xFx is not due to rare earth magnetism.



قيم البحث

اقرأ أيضاً

185 - K Kadowaki , T Goya , T Mochiji 2008
Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium (GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been prepared via conventional solid state reaction at ambient pressure. The non-yttrium substituted oxyp nictide show superconducting transition as high as 43.9 K from temperature dependent resistance measurements with the Meissner effect observed at a lower temperature of 40.8 K from temperature dependent magnetization measurements. By replacing a small amount of gadolinium with yttrium Tc was observed to be lowered by 10 K which might be caused by a change in the electronic or magnetic structures since the crystal structure was not altered.
The phonon and crystal field excitations in several rare earth titanate pyrochlores are investigated. Magnetic measurements on single crystals of Gd2Ti2O7, Tb2Ti2O7, Dy2Ti2O7 and Ho2Ti2O7 are used for characterization, while Raman spectroscopy and te rahertz time domain spectroscopy are employed to probe the excitations of the materials. The lattice excitations are found to be analogous across the compounds over the whole temperature range investigated (295-4 K). The resulting full phononic characterization of the R2Ti2O7 pyrochlore structure is then used to identify crystal field excitations observed in the materials. Several crystal field excitations have been observed in Tb2Ti2O7 in Raman spectroscopy for the first time, among which all of the previously reported excitations. The presence of additional crystal field excitations, however, suggests the presence of two inequivalent Tb3+ sites in the low temperature structure. Furthermore, the crystal field level at approximately 13 cm-1 is found to be both Raman and dipole active, indicating broken inversion symmetry in the system and thus undermining its current symmetry interpretation. In addition, evidence is found for a significant crystal field-phonon coupling in Tb2Ti2O7. These findings call for a careful reassessment of the low temperature structure of Tb2Ti2O7, which may serve to improve its theoretical understanding.
In this study pseudoquaternary rare-earth nickel borocarbide superconductors RxR1-xNi2B2C have been investigated predominantly in the diluted limit x << 1 or (1 x) << 1. In all of these materials structural disorder results in a reduction of the supe rconducting transition temperature Tc . Depending on the selection of the rare earth elements R and R this disorder induced deterioration of superconductivity is combined with magnetic pair breaking of Abrikosov-Gorkov type or pair breaking of non-magnetic impurities in antiferromagnetic superconductors (Morozov-type of pair breaking).
X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide temperature range (4-120)K have been made. In the superconducting species, the strong dependencies of the linewidth and resonance line position from the sweep direction of the applied magnetic field are revealed at the temperatures significantly below TC. The possible origins of the observed hysteresis are analyzed. Applicability of the presented EPR approach to extract information about the dynamics of the flux-line lattice and critical state parameters (critical current density, magnetic penetration depth, and characteristic spatial scale of the inhomogeneity) is discussed
The discovery of infinite layer nickelate superconductor marks the new era in the field of superconductivity. In the rare-earth (Re) nickelates ReNiO2, although the Ni is also of d9 electronic configuration, analogous to Cu d9 in cuprates, whether el ectronic structures in infinite-layer nickelate are the same as cuprate and possess the single band feature as well are still open questions. To illustrate the electronic structure of rare-earth infinite-layer nickelate, we perform first principle calculations of LaNiO2 and NdNiO2 compounds and compare them with that of CaCuO2 using hybrid functional method together with Wannier projection and group symmetry analysis. Our results indicate that the Ni-dx2-y2 in the LaNiO2 has weak hybridization with other orbitals and exhibits characteristic single band feature, whereas in NdNiO2, the Nd-f orbital hybridizes with Ni-dx2-y2 and is a non-negligible ingredient for transport and even high-temperature superconductivity. Given that the Cu-dx2-y2 in cuprate strongly hybridizes with O-2p, the calculated band structures of nickelate imply some new band characters which is worth to gain more attentions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا